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Abstract 

In RFID protocols, random numbers are mainly required 

to anonymize tag answers in order to guarantee the privacy 

of the owner of the transponder. Our analysis looks at the 

feasibility of RFID tags for supporting Cryptographically 

Secure Pseudorandom Number Generators (CS-PRNG) on 

their limited chip. Specifically, we study the implementation 

of the Blum-Blum-Shub (BBS) pseudorandom number gen­

erator for security levels 232 (160 bits) and 264 (512 bits) 

respectively, these values being suitable for many RFID ap­

plications but not for standard security applications. 
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1. Introduction 

Radio Frequency Identification (RFID) is an automatic 
identification technology in which a small transponder 
(tag), attached to an object (i.e. person, animal or prod­
uct), receives and responds to radio-frequency queries from 
a transceiver (reader). Tags usually respond with a constant 
value which facilitates their association with their holders. 
An attacker may track a user's movements, putting location 
privacy at risk. The inclusion of random numbers in tag 
answers may deter such attacks. In reality, however, mech­
anisms for random generation are often not as well designed 
as could be expected [7]. 
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2. Blum-Blum-Shub 

Cryptographically Secure Pseudorandom Number Gen­
erators (CS-PRNG) fall into two main groups: 1) those 
based on standard cryptographic primitives; 2) those based 
upon mathematical problems thought to be hard (i.e there 
is no algorithm bounded by a running time of the form 
O(nk). In this paper, we focus on the Blum-Blum-Shub 
(BBS) generator whose security depends on the fact that 
integer factorization is generally assumed to be intractable 
[2]. A pseudorandom bit sequence {Zb Z2, ... , Zl} of length 
l is generated as described below: 

1. Setup 

1.1. Generate two large secret random (and distinct) 
primes p and q each congruent to 3 modulo 4, and com­
pute n = p. q. 

1.2. Initialize the seed 8 randomly in the interval 
[1, n-l] such thatgcd(8, n) = 1 and compute Xo = 82 

modn. 

2. Random Bit Generation 

For i from 1 to 1: 

2.0 Xi = xLI mod n 

2.1 Zi = least significant bit of Xi 

The generation of each pseudo-random bit {Zi} requires 
one modular squaring. We can increase the efficiency of 



the generator by extracting the j least significant bits of Xi 

(step 2.1), where j = c . 19 19 n and c is a constant. This 
version of the generator is also cryptographically secure if 
n is sufficiently large [9]. 

2.1. Motivation 

In general terms, the hardware demands and temporary 
requirements of this generator, mainly associated with the 
use of modular multiplications, make the primitive inad­
equate for constrained RF devices. The assertion is cor­
rect when we demand the same security for RFID appli­
cations as for conventional cryptographic applications (i.e. 
electronic banking). Following NIST recommendations, a 
module n of 2048 bits length has to be used for crypto­
graphic applications from 2009 to 2010 [4]. For that length 
of module, BBS implementation far exceeds the capabilities 
of most RF transponders (e.g. contacless smart cards, RFID 
tags, etc. ). However, practical security values in the range 
of [232,264] are adequate for many RFID applications. For 
example, EPC Class-l Generation-2 RFID tags, which are 
widespread around the world and read in their millions ev­
ery day, can offer a maximum security level of 232 [5]. 

As mentioned previously, the security of BSS is linked 
to integer factorization problem. The expected running time 
of the elliptic curve factoring algorithm in the hardest case, 
when n is a product of two primes (p and q) of roughly the 
same size, is Ln [I/2, 1]. Alternatively, the quadratic sieve 
algorithm may be used, having the same expected running 
time but being much more efficient [10]. 

Definition Let A be an algorithm whose inputs are ei­
ther elements of a finite field Fq, or an integer q. A is a 
subexponential-time algorithm when its expected running 
time is of the form: 

(1) 

where c is a positive constant, and 0: is a constant satisfying 
0<0:<1. 

From Equation 1, and fixing 0: = 0.5 and c = 1, a 
length of 160 bits or 512 bits is required for satisfying a 
security level of 232 or 264 respectively. These values are 
significantly less demanding than NIST recommendations 
which are suitable for conventional cryptographic applica­
tions. However, RFID applications are often less demand­
ing in terms of security, due to the need to achieve a balance 
between operativity, price and security. 

Main Contribution: This paper makes a detailed anal­
ysis of the feasibility of implementing the BBS generator 
for 160 bits and 512 bits length. It is the first -to the best 
of our knowledge- to discuss the use of CS-PRNG in RFID 
tags by which security levels are relaxed in comparison with 
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Figure 1. Combinational Multiplier Architec­
ture 

standard cryptography whilst maintained at a suitable level 
( [232,264]) for intended applications. Specifically, different 
alternatives have been considered with the aim of optimiz­
ing the resources consumed. As the end of our study, the 
reader is provided with an estimation of the circuit area re­
quired and the time consumed in each generation for the 
four architectures analyzed. 

3. Modular Multiplication 

The implementation of the BBS algorithm is based on 
modular squaring, which can be computed by modular mul­
tiplication. Different algorithms have been proposed to ob­
tain the modular multiplication of two numbers (A x B 
mod M) [14]. 

Specifically, we study the hardware implementations 
for the following algorithms: 1) Classical combinational 
multiplier, with Barrett's reduction; 2) Classical shift and 
add multiplication, with Barrett's reduction; 3) Karatsuba's 
multiplication, with Barrett's reduction; 4) Montgomery's 
direct modular multiplication, iterative architecture. 

3.1. Classical combinational multiplication 

The fastest implementation of a multiplier is achieved 
using combinational logic only. Considering the partial 
multiplications that are needed, the multiplier can be imple­
mented with logic and gates for each partial multiplication, 
and adders to perform the addition of the partial multipli­
cations. The reader should note that this approach has the 
disadvantage that the multiplier requires a lot of hardware. 
The architecture required for 4-bit unsigned binary numbers 
is shown in Fig. 1. 

3.2. Classical shift and add multiplication 

To simplify the hardware necessary for partial products, 
these can be stored in a registry, and multiplications can be 
obtained in several clock cycles. To optimize the number of 
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Figure 2. Shift and Add Multiplier Architecture 

clock cycles consumed, the partial multiplications consid­
ered are the multiplicand by each bit of the multiplier (i.e. 
there are as many partial multiplications as bits had by the 
multiplier). As multiplication by two with binary numbers 
can be implemented as a left shift, the partial multiplica­
tions can be implemented with just a shift left register. An 
adder is necessary for the addition of the partial results, and 
some control logic completes the architecture of this multi­
plier as illustrated in Fig. 2. This sequential multiplier uses 
very few hardware resources, but it is slow because many 
clock cycles are consumed, especially if we consider big 
operands. 

3.3. Karatsuba-Ofman's 

Karatsuba-Ofman's [8] is a much more efficient algo­
rithm in terms of its arealtime factor. It is based on a divide­
and-conquer strategy. A 2n-digit integer multiplication is 
reduced to two n-digits multiplications, one (n + 1 )-digits 
multiplication, two n-digits subtractions and two 2n-digit 
additions. 

We consider the product X x Y of 2 integers, X and Y. 
These integers can be split into two halves (i.e. XH, XL, 
and Y H, Yd. Let n be the number of bits of each of these 
halves: X = XH· 2n + XL and Y = YH· 2n + YL. 

The product P = X x Y can be obtained by computing 
four n-bit multiplications: 

P X x Y = (XH . 2n + XL)(YH . 2n + YL) = 

22n(XHYH) + 2n(XHYL + XLYH) + XLYL (2) 

Finally, the computation of Equation 4 can be improved 
by applying the equivalency shown below: 

XHYL+XLYH = (XH+Xd(YH+Yd-XHYH-XLYL 
(3) 

Summarizing, the 2n-bits multiplication (X x Y) can 
be thus reduced to three n-bit multiplications, XLYL and 
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(XH + XL)(YH + YL) by applying Karatsuba-Ofman's al­
gorithm. 

The hardware implementation that we obtain for this 
algorithm uses a shift and add multiplier (see Fig. 2) for 
the reduced multiplications. Shift registers are used for 
the multiplication by 22n and 2n, and the rest of the logic 
can be implemented with combinational logic (i.e. an 
adderlsubtractor and some control logic ). 

The multiplication algorithms considered above can be 
converted into modular multipliers by performing a reduc­
tion operation after the multiplication. To do this, we can 
use Barrett's algorithm that has been implemented in hard­
ware too. 

3.4. Barret's Reduction 

This algorithm is used to obtain the remainder of an in­
teger division [1]. The basic idea of the algorithm consists 
of successively shifting and subtracting the module until 
the remainder is non-negative and smaller than the mod­
ule. Several optimizations can be applied to this algorithm, 
given that a constant module is going to be used for all 
the operations in the system. In this case, Barrett's reduc­
tion method requires the pre-computation of one parame­

ter J.L = [2: 1, which does not change as long as the mod­
ulo remains constant. The reduction then takes the form 
R = N - [[fnlfn-1M, which requires two n-bit multiplica­
tions and one n-bit subtraction; a total of three multiplica­
tions and one subtraction. 

Specifically, the following optimized algorithm is em­
ployed in our experimentation, which consumes n clock cy­
cles: 

algorithm Reduction (P, M) 

int R_O = P 
int N = LeftShift (M, n) 

1: for i = ° to n 

2: R_i = R_(i-1} - N; 

3: if R < ° then 

4: R_i = R_(i-1} 

5: N = RightShift (N) 

return R_i; 

end Reduction 

where P is the result of the multiplication between the 
n-bits operands A and B and where M is the modulo. 

3.5. Montgomery 

This algorithm interleaves multiplications and reduction 
operations to obtain the result of the modular multiplication 
in just once step [12], unlike the algorithms shown previ­
ously, which require two steps, multiplication and reduc­
tion. Basically, a series of additions are computed to ob­
tain the modular product. In [13], an iterative sequential ar­
chitecture and a systolic-based architecture are analyzed to 



--, 
'-----4 

1�71 
I 
! 

Figure 3. Montgomery Iterative Sequential Ar­
chitecture 

implement the modular multiplication using the fast Mont­
gomery algorithm. We focus on the sequential architecture 
-displayed in Fig.3- because our operands are smaller than 
512 bits. 

Let A and B be two arbitrary integers and M the mod­
ule, where n is their size in its binary representation ( 
Q = L�Ol qi X 2i for Q E {A, B, M} ). These values 
must satisfy two pre-conditions: 1) the module M has to 
be relatively prime to the base (i.e. gcd(M,2) = 1 for 
radix = 2); 2) the multiplicand A and the multiplier B 
must be smaller than the module M. The algorithm used in 
the multiplication is given below: 

algorithm Montgomery (A, B, M) 

int R = 0 

1: for i = 0 to n-l 

2: R = R + a_i x B; 

3: if r_O = 0 then 

4: R = R div 2 

5: else 

6: R = (R+M) div 2 

return R; 

end Montgomery 

The result obtained after the computations of n iterations 
is R = A * B * 2-n mod M. An extra Montgomery modu­
lar multiplication by the constant C = 2n mod M is thus 
required to obtain the right result. So the modular multipli­
cation is computed using the algorithm below: 

algorithm ModularMult (A, B, M, n) 

const c := 2"n mod M; 

int R := 0; 

R := Montgomery (A, B, M) 

return Montgomery (R, c, M); 

end ModularMult 

Note that the algorithm is efficient if M is constant, 
which is typical in cryptographic algorithms that use modu-
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lar multiplications. In this case, C is a constant that can be 
pre-computed. 

3.6. Hardware Implementation 

We study the hardware implementation for the four mod­
ular multiplications algorithms described in section above. 
The different architectures are described in VHDL descrip­
tion language. The design uses generic parameters, so that 
it can be easily synthesized for different sizes of the vari­
ables (n = {22, 23, ... , 210}). The Modelsim tool is used in 
simulation to test the correctness of the hardware descrip­
tions [11]. The synthesis of the circuits is obtained using 
Xilinx Foundation [15]. 

To estimate area and delay, we use a Xilinx pro­
grammable device. We chose one with small CLBs (Look­
Up Tables) so that correspondence with Gates Equivalent 
(GE) is as close as possible. A Spartan-3 FPGA device, 
specifically the XC3S1500L (4-input LUTs), was used for 
this. Table 1 shows area (LUTs), maximum operation fre­
quency (MHz) and the number of clock cycles consumed in 
each generation for each architecture and for different bit 
length of the variables. 

Of these four architectures, classical combination archi­
tecture can be discarded because of the excessive circuit 
area demanded for implementation. To facilitate compari­
son of the remaining alternatives, we calculate the area/time 
factor at the maximum operating frequency. The results are 
summarized in diagrams 4a) and 4b) in Figure 4. We ob­
serve that Montgomery offers the best results both for low 
bit lengths and for high bit lengths. According to architec­
tures that require a reduction after the multiplication, shift 
and add architecture offers better performance than Karat­
suba architecture. It consumes the same number of clock 
cycles and has approximately the same maximum frequency 
approximately but Karatsuba architecture demands a higher 
circuit size. 

4. Hardware Implementation of Blum-Blum 
Shub 

In Blum-Blum Shub generator, the generation of an out­
put (i.e. one or j random bits) can be obtained with a mod­
ular multiplication. So, only a modular multiplier and some 
basic control logic are needed. In particular, we analyze dif­
ferent architecture implementations of the BBS generator, 
considering the different modular multiplications discussed 
in the previous section. 

We use the same methodology, software and FPGA as 
described in Section 3. However, we now focus our anal­
ysis on module sizes of 160 and 512 bits exclusively. Ad­
ditionally, we set operating frequency at 100 KHz, because 
despite being a value considerably inferior to the maximum 



Table 1. Hardware Implementation of Modular Multiplication 
n Area Fmax Clock 

(bits) (LUT) (MHz) Cycles 
4 124 154 5 

8 291 105 9 

16 724 77 17 
32 1979 55 33 

64 6129 41 65 
128 20550 35 129 

256 72639 25 257 
512 282892 14 513 

1024 126220 8 1025 

A. Comb. + Barret 

n Area Fmax Clock 
(bits) (LUT) (MHz) Cycles 

4 303 168 6 

8 579 131 12 

16 1102 112 24 

32 2221 88 48 

64 4366 62 96 

128 8422 41 192 

256 14107 25 384 
512 38978 14 768 

1024 76112 8 1536 

C. Karatsuba + Barret 

Table 2. Hardware Implementation of BBS 
Area Time 

(LTUs) (p;sec.) @ 100 KHz 

Comb. Classic + Barret 
160 bits 22,550 1,850 
512 bits 284,892 5,270 

Shift and Add + Barret 
160 bits 6,176 3,700 
:lLlOIts ;l1,/lSU .,lS4U 

Karatsuba + Barret 
160 bits 10,433 2,900 
:ll;l OIts 4U,U:l;l \/,;llSU 

Montgomery Iterative 
160 bits 3,052 3,563 
:l1;l olts \/,\/:lj 11,;luu 

operation frequency, it is the typical operation frequency of 
RFID tags [6]. The experimental results are summarized in 
Table 2. 

The results show very similar execution times for all the 
algorithms. This is because the same operation frequency is 
used for all, and the advantage that some of these algorithms 
have of being able to work at higher frequencies cannot be 
exploited. The algorithms that perform the modular mul­
tiplication in two steps are disadvantaged by having to use 
Barrett's reduction which requires about n clock cycles. As 
the delay is not a differentiated factor, the choice of algo­
rithm will generally depend on the area they occupy. In this 
respect, we can see that the Montgomery iterative approach 
produces the best results. 

Finally, the chart in Fig. 5 compares the area/time prod­
uct of the four implementations. Montgomery iterative ar­
chitecture offers the most efficient results. The next most 
efficient is the architecture based on shift and add multipli­
cation with Barret reduction which increases this factor by 
about 50%. The other two approaches are lest efficient in 
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n Area Fmax Clock 
(bits) (LUT) (MHz) Cycles 

4 148 168 8 

8 299 132 16 

16 573 112 32 
32 1131 88 64 

64 2311 62 128 

128 4616 41 256 

256 7829 25 512 
512 19686 14 1024 

1024 36053 8 2048 

B. Shift and Add + Barret 

n Area Fmax Clock 
(bits) (LUT) (MHz) Cycles 

4 59 122 9 

8 115 113 17 

16 225 96 33 
32 442 88 65 

64 880 59 129 

128 1756 42 257 

256 3484 24 513 
512 6966 14 1025 

1024 14035 8 2049 

D. Montgomery Iterative 

this aspect. 

5. Conclusions 

In this paper, we examine several architectures for the 
implementation of the BBS pseudorandom number gener­
ator. Generally, the BBS generator (Le. 768 or 1024 bits) 
is very demanding in terms of circuitry and computation 
time. In [3], Blum and Paar presented an efficient FPGA 
implementation for these module lengths, which proves the 
excessive circuit area required for their implementation. 

However, with regard to security, many RFID applica­
tions are not as exigent as standard cryptographic applica­
tions. Specifically, a security level of 232 or 264 may be an 
adequate value for a considerable number of applications. 
For this reason, in this paper, we analyzed the implemen­
tation of the BBS generator with a modulo of 160 and 512 
bits respectively. For each one of these modules, we imple­
mented different architectures, measuring the area (LUTs) 
and the consumed time per generation (J-Lsec.). The deciding 
factor in the selection of the most convenient architecture is 
the circuit area because similar execution times are obtained 
with the different alternatives studied. The Montgomery it­
erative architecture is the most efficient and we recommend 
its use for constrained devices such as RFID tags or sensor 
networks nodes. A comparison of our results with [3] is not 
possible as the authors used a completely different method 
of estimation, estimating area by the number of CLB. Addi­
tionally, they used a FPGA that has 3 LUTs and some addi­
tional logic in each CLB. This FPGA is very different from 



_ Add and shift + Barret 
� Karatsuba + Barret 
_ Montgomery Iterative 

n(bits) 

(a) Area x Time Factor (4 - 32 bits) 

_ Add and shift + Barret 
� Karatsuba • Barret 
_Montgomery Iterative 

64 

n(bits) 

(b) Area x Time Factor (64 - 1048 bits) 

Figure 4. Area x Time Factor of Modular Mul­
tiplication 

ours, which is much smaller an has simpler CLBs. Instead 
of the number of CLBs, we provide the number of LUTs 
which is a much more convenient means of estimation of 
the combinational area of the circuit. 
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