
EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 1

Employing a Secure Cipher Does not Guarantee the
Security of RFID Protocols

Masoumeh Safkhani, Nasour Bagheri, Pedro Peris-Lopez, Juan M. E. Tapiador

Abstract—It is a common practice to employ encryption
functions to provide security for an application. On the other
hand, it is well known that a bad usage of even a very
strong cryptographic primitive can destroy the security of an
application/scheme. Several RFID protocols have recently been
proposed whose security reside on encryption primitives. Among
these works we pay attention on the following ones: 1) Khan and
Moessner proposed a new RFID authentication protocol [5]; 2)
Kapoor and Piramuthu presented a single-tag and single-owner
ownership transfer protocol [3] ; 3) Kapoor et al. proposed a
multi-tag and multi-owner ownership transfer scheme in supply
chains [4]; and 4) Zhou et al. presented multi-level RFID tag
ownership and transfer in health-care environments [8]. In these
four proposals the authors state that their schemes are secure
against de-synchronization attacks. Nevertheless, in this article
we present efficient de-synchronization attacks against the above
mentioned protocols. Our attacks are based on the inappropriate
use of the encryption function. The success probability of all the
proposed attacks is almost one while the complexity is just one
execution of the protocol.

Index Terms—IEEEtran, journal, LATEX, paper, template.
RFID, Cryptanalysis, Authentication, Protocol, De-
synchronization Attacks, Man-In-The-Middle.

I. INTRODUCTION

A common RFID system includes three parties: tags,
readers and a back-end database. The tag, which can

be accessed by authorized readers, is attached to an item
(i.e., person, animal, or object) and includes some information
linked to the tag holder. The back-end database may be used
to provide some extra storage or computational capabilities to
the reader and also keeps a high level information related to
the tag holder.

In an RFID system authentication protocols are used by
readers and tags in order to authenticate each other. It com-
monly is a game-playing argument between both entities. In
such game, one of the principals in the protocol sends a(some)
challenge(s) to the other principal and then it verifies the
response(s) received. The majority of RFID authentication
protocols require the authentication process on both sides.
This sort of protocols are named as mutual authentication
protocols. However, in certain applications only one party is
authenticated [5].

On the other hand, nowadays, RFID tags are increasingly
being used to identify, track and sense ambient conditions

Masoumeh Safkhani is with the Department of Electrical Engineering, Iran
University of Science and Technology (IUST), Tehran, Iran.

Nasour Bagheri is with the Department of Electrical Engineering, Shahid
Rajaee Teachers Training University, Tehran, Iran.

Pedro Peris-Lopez and Juan M. E. Tapiador are with the Computer Security
Lab (COSEC), Carlos III University of Madrid, Leganes, Madrid.

of tagged items [3]. Most of these applications impose that
at various moments during the tag life, the owner of a tag
can change. Therefore we need a mechanism to transfer the
ownership of tagged objects from the current owner to a
new owner. This kind of mechanisms are known as own-
ership transfer schemes. Attempting to provide the required
security in a RFID system, strong (or regrettably weak)
mutual authentication and ownership transfer protocols, which
rely on encryption or cryptographic hash functions, have
appeared in the literature. In this research direction, Khan
and Moessner [5] recently proposed a lightweight mutual
authentication protocol, Kapoor and Piramuthu [3] presented
a single-tag and single-owner ownership transfer scheme,
Kapoor et al. [4] generalized the above proposal for multi-
tag and multi-owner ownership transfer scheme and Zhou et
al. [8] proposed a multi-level RFID tag ownership and transfer
in health-care environments. The just mentioned schemes use
encryption functions to offer an appropriate security level.
Furthermore the protocol designers claim optimal security
for their proposed protocols –including protection against de-
synchronization states. Nevertheless, in this paper we present
efficient de-synchronization attacks against these four proto-
cols. The success probability of the proposed attacks is almost
one and only requires one execution of the protocol.

The proposed attacks mainly exploit that an encrypted
message is accepted by an entity without any validation of
its origin and/or without any checking of its integrity. Hence,
in a man-in-the-middle attack whether the adversary changes
either the key K used in the encryption function or the
cipher-text C (in the RFID context this second strategy is the
simplest one since messages passed through the insecure radio
channel), then the receiver will decrypt that altered message
and thus the extracted plain-text P ′ would be incorrect. It
must be noted that any change on K or C will not affect
the proper working of the decryption function, but the output
P ′ value would be a random value (in comparison to the
correct P). In Table I we provide some encryption examples
of same/related P s with same/related Ks for the AES block
cipher. As shown, any modification on any of the inputs (K
or P) makes the output (C) –and consequently the decrypted
plain-text (P ′)– random and unpredictable.

Paper Organization: We introduce Khan and Moessner
protocol in Section II, explain its security analysis concerning
the mutual authentication protocol, and finally show a de-
synchronization attack. In Section III we present our security
analysis of Kapoor and Piramuthu ownership transfer protocol
and then the security of the enhancement scheme proposed by

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 2

TABLE I
SAMPLE ENCRYPTIONS WITH AES [1].

Plain text (in hex) Key (in hex) Cipher text (in hex)
00000000000000000000000000000000 00000000000000000000000000000000 66e94bd4ef8a2c3b884cfa59ca342b2e
00000000000000000000000000000001 00000000000000000000000000000000 58e2fccefa7e3061367f1d57a4e7455a
00000000000000000000000000000000 00000000000000000000000000000001 0545aad56da2a97c3663d1432a3d1c84
140f0f1011b5223d79587717ffd9ec3a 00000000000000000000000000000000 00000000000000000000000000000000
6c5a75d8a41802ad5a35818dd5abfddc 00000000000000000000000000000000 00000000000000000000000000000001
140f0f1011b5223d79587717ffd9ec3a 00000000000000000000000000000001 9e909d68c4c95f750feaf3f47934a69a

Kapoor et al. is also scrutinized in Section IV. In Section V we
present the security analysis of Zhou et al. ownership transfer
protocol. After this, in Section VI we present a discussion
about the principles for designing secure cryptographic pro-
tocols and its non-conformity in the four protocols examined
through this paper. Finally, Section VII concludes the paper.

II. DESYNCHRONIZATION ATTACK AGAINTS KHAN AND
MOESSNER’S AUTHENTICATION PROTOCOL

Recently Khan and Moessner [5] have proposed a mutual
authentication protocol for RFID systems, hence forth denoted
by KM-protocol. A description of KM-protocol is depicted in
Fig. 1. In this protocol (Keyc1,Keyc2) is a pair of keys for
tags belonging to the same class and Kc represents the class
key. ID = IDl‖IDh is the unique identifier of a tag (lower
and higher half respectively) and ‘‖’ denotes concatenation.
Tc symbolizes the authentication counter in the tag side and
Tcstored denotes its corresponding record in the server. The
authors state that h(a, b) is a cipher or alternatively a hash
function [5, Sec. III]. In the protocol calculation, they use
h−1(a, b) but it is not possible to compute the inverse of a
hash function and thus h(a, b) must be an encryption function.

We present a roughly description of the protocol but details
can be checked in the original paper. In KM-protocol, the
tag is authenticated by the following exchanged of mes-
sages. First, the reader generates a random number Rr and
sends m1 = Rr to the tag. Upon receiving m1, the tag
generates a random number Rt, increments Tc, computes
h1 = h((Rr‖Rt) ⊕ ID, Keyc1) and h2 = h((Rr‖0) ⊕
(Rt‖Rt)⊕ID⊕Tc, Keyc2), and finally sends m2 = kc‖h1‖h2

to the reader. Then, the reader forwards Rr‖m2 to the server.
The server follows the following procedure: 1) it fetches the
key pair that belongs to kc; 2) it decrypts h1 and h2 with
keys Keyc1 and Keyc2 respectively; 3) it reveals the upper
part of ID as IDh = h−1(h1, Keyc1) ⊕ (Rr‖0); 4) it
looks up IDl and Tcstored from its database and reveals Rt as
Rt = h−1(h1, Keyc1)⊕ (Rr‖0)⊕ (IDh‖IDl); 5) it reveals
the tag counter as Tc = h−1(h2, Keyc2)⊕(Rt‖Rt)⊕(Rr‖0)⊕
(IDh‖IDl); 6) If (Tc > Tcstored), it sets m3 = Authentic.
Otherwise m3 = Not Authentic. Finally, the server sends
m3 to the reader.

A. De-synchronization Attack

Generally, in a de-synchronization attack the adversary
forces the tag and the reader to update their shared values
such that both entities will not be able to authenticate each
other hence forth.

In KM-protocol each query sent to a target tag, either by a
legitimate reader or an adversary, increments its counter Tc.
Khan and Moessner [5] state that it would be possible to de-
synchronize the tag and the reader if the adversary swamps
the tag with many queries until its counter starts from zero
again. To overcome this drawback, the authors assume that
the authentication counter has a length l greater or equal to 32
bits (i.e., |Tc| > 32). Nevertheless, in this section, we present
a different de-synchronization attack, which does not need to
restart the counter to a zero value but forces the reader to set
its counter to a value far ahead from the counter value in the
tag side. The main observation is that the server only verifies
the correctness of h1 and does not verify the correctness of
the received h2. Hence the adversary could replace h2 by any
arbitrary value and it would be accepted by the server.

Our adversary, A, is a man in the middle adversary which
stays in the public radio channel between the tag and the
reader and has the ability to eavesdrop, block or modify the
messages exchanged between the reader and the tag, and vice
versa. In this attack, when the tag sends m2 = kc‖h1‖h2 to
the reader, A intercepts m2, generates a random number and
assigns it to h2, denoted by h′2. Then A sends m′2 = kc‖h1‖h′2
to the reader, and finally the reader forwards Rr‖m′2 to the
server. Upon the reception of that message, the server: 1)
fetches the key pair that belongs to kc; 2) decrypts h1 and h′2
with Keyc1 and Keyc2 respectively; 3) discloses the upper
part of ID as IDh = h−1(h1, Keyc1) ⊕ (Rr‖0); 4) looks
up IDl and Tcstored from its database and reveals Rt as
Rt = h−1(h1, Keyc1)⊕(Rr‖0)⊕(IDh‖IDl); 5) it discloses
the tag counter as T ′c = h−1(h′2, Keyc2) ⊕ (Rt‖Rt) ⊕
(Rr‖0) ⊕ (IDh‖IDl); 6) If (T ′c > Tcstored) the server sets
m3 = Authentic and Tcstored = T ′c. Finally the server sends
m3 to the reader.

After conducting the above described attack, the tag can not
be authenticated by the reader in future sessions as explained
below. Assuming that the tag has not been employed for a
long time, Tc would be a small value (i.e., Tc << 2l−1

where l is the bit length of Tc. As consequence of sending
a random h′2, the expected value for the revealed value of T ′c
(step 5 in the previous paragraph) is 2l−1, where |T ′c| = l.
Hence, the server authenticates the tag (i.e., T ′c > Tcstored)
and updates Tcstored = T ′c ≈ 2l−1 while the Tc in the tag
side is not so bigger value – if the adversary is not so lucky
and T ′c < Tcstored , she simply has to repeat the attack and try
with another h′2 random value. Therefore, the adversary could
force the server to set its Tcstored to a value far advance from
the value of Tc in the tag side. Hence forth, the server would
not authenticate the tag since (T ′c < Tcstored). For instance,
assuming l = 64, which satisfies the designer criteria regarding

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 3

 !"#!$%!$&!$ '"(

Fig. 1. The KM-protocol description [5].

Fig. 2. The KP-protocol description [5].

the length of the counter (l > 32), we expect that after
executing the proposed attack, Tcstored is updated to a value
around 263. For this, we can fairly state that the tag would not
be authenticated by the reader in the next-legitimate sessions
as result of the unsynchronized counters (i.e., Tcstored >> T ′c).

III. DE-SYNCHRONIZATION ATTACK AGAINTS KAPOOR
AND PIRAMUTHU’S OWNERSHIP TRANSFER PROTOCOL

Ownership transfer protocols are designed with the purpose
of transferring ownership of an item that is RFID labelled.
Kapoor and Piramuthu [3] have recently proposed an Owner-
ship Transfer Protocol (OTP) with Trusted Third Party (TTP),
hence forth denoted by KP-protocol. The protocol is depicted
in Fig. 2, but for more details we urge the reader to consult the
original paper [3, Sec. III]. Note that fk(.) and f ′k(.) denote
keyed (with key k) encryption functions.

In this protocol, upon receiving an ownership transfer (OT)
request, the TTP generates a random nonce NP and a secret
key s2 which will be shared between the tag and the new
owner (R2). It then computes f ′(NP⊕ti⊕s1)(s2) and sends the
tuple (NP , f

′
(NP⊕ti⊕s1)(s2)) to the tag, where s1 is the secret

shared between the tag and the current owner (R1) and ti is
the secret shared between the tag and TTP. Upon receiving
that message, the tag extracts s2 from the encrypted message
and replaces the current secret key s1 by the new key s2.
In addition, the tag acknowledges by generating a random
nonce NT and sending the pair (NT , H(ti⊕NT)(s2 ⊕ NP)).
Then, TTP informs R1 that his privileges on this tag are
being revoked. It simply sends a revoke message and a keyed
encryption token fr1(s1). Next, TTP grants new owners (R2)
full permissions along with the privileges for the tag. The
rest of the protocol can be followed from Fig. 2 but it is not
relevant for our attack.

A. De-synchronization Attack

As described previously, once the tag updates its secret key
from s1 (old owner R1) to s2 (new owner R2), it will not be
accessible by R1 any more, otherwise it would be vulnerable
to a window attack in which for a fraction time both current
and new owners could access to the tag [9]. On the other
hand, the new secret s2 is derived from the message X =
f ′(NP⊕ti⊕s1)(s2) sent by TTP (i.e., s2 = f ′−1(NP⊕ti⊕s1)(X)).
Nevertheless, the protocol does not include any checking
mechanism to verify the origin (source) and correctness of
the extracted s2 value. That is, any value obtained from the
tag calculations –decryption of X– is accepted without further
checking and it is used as the new secret shared with the new
owner. An adversary can exploit this fault to render a tag in
a de-synchronized state and consequently the OT system. The
procedure of the proposed attack is described below.

An adversary intercepts the pair (NP , f
′
(NP⊕ti⊕s1)(s2)) sent

from TTP to the tag and replaces it by any desired pair (x, y)
such that (x, y) 6= (NP , f

′
(NP⊕ti⊕s1)(s2)). The tag is thus

cheated to update its current secret to s′2 = f ′−1(x⊕ti⊕s1)(y).
This new key s′2 does not match any of the TTP records (new
s2 and old s1). The probability of success in the proposed

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 4

attack is 1 − 2−n+2, where n is the bit length of s1. Hence,
following this attack, the tag updates its secret key to a value
that neither new owners nor TTP has knowledge of it and
prevents its access in future-legitimate communications –that
is, the tag is render inaccessible. The success probability of
the given attack is almost one and the complexity is negligible.

In the above attack, one may argue that the message sent
from the tag to TTP ((NT , H(NT⊕ti)(s

′
2⊕NP))) would not be

accepted by TTP because the adversary previously altered the
tuple sent from TTP to the tag – in consequence it provoked an
incorrect key derived by the tag – and the acknowledge tuple
generated by the tag would not be valid with high probability.
Although it gives the TTP the ability to discover potential
attacks, however, it cannot react. In fact, to contact with the
tag, TTP needs the tag’s secret, which was just updated to s′2
due to the attack, and it does not know it. Hence, the tag is
de-synchronized forever and neither TTP nor the owners can
access it any more.

IV. DESYNCHRONIZATION ATTACK AGAINTS KAPOOR et
al.’S OWNERSHIP TRANSFER PROTOCOL

While in the previous Section we have analysed the security
of a protocol which transfers the ownership of a single tag to a
new owner reader, it is not uncommon scenarios in which the
tag ownership is shared among multiple owners, and its dual,
the case of an object labelled with multiple tags. Motivating
by this kind of scenarios, Kapoor et al. [4] proposed a shared
ownership transfer protocol (multiple-owners) and a protocol
for inclusion and exclusion of tags in a multiple-tagged object.
The scheme, called KZP-protocol in short, is the object of
our security analysis. We sketch the protocol in Fig. 3 and
interested readers can consult the original paper for details [4,
Sec. 3.1].

Similarly to the KP-protocol, in this protocol upon receiving
an ownership transfer (OT) request, the TTP generates a
random nonce NP and a new key s2. This new secret key
will be shared between the tag and the new owner R2 (or a
group of owners R21, R22, . . . , R2M). Finally, TTP computes
f ′(NP⊕ti⊕s1)(s2) and sends the pair (NP , f

′
(NP⊕ti⊕s1)(s2)) to

the tag, where s1 is the secret shared between the tag and the
current owner R1 (or the group R11, R12, . . . , R1M) and ti
is the secret shared between the tag and the TTP. Once that
message is received, the tag extracts s2 from the encrypted
message and updates its secret key by replacing the current
key s1 by the new secret key s2. The tag then acknowledges
the server by generating a random nonce NT and sending
the token (NT , H(NT⊕ti)(s2⊕NP)). After that, TTP informs
the current owners R11, R12, . . . , R1M that their privileges on
this tag were revoked. It sends both a revoke message and
a cryptographic token fr1i(s1) to each of the owners in the
group, where r1i is a secret shared between R1i and TTP .
Next, TTP grants the new owners (R21, R22, . . . , R2M) full
permissions along with any privileges for the tag. The rest of
the protocol can be followed from Fig. 3, but this part has not
influence on our attack.

Fig. 3. The KZP-protocol description [4].

Fig. 4. The ZYP-protocol description [8].

A. De-synchronization Attack

In KZP-protocol, as occurred in KP-protocol, once the tag
executes the updating of its secret key from s1 to s2, R1

cannot gain access to the tag any more, otherwise it will be
vulnerable to window attack [9]. As an important drawback
in the design of the protocol, the new key s2 is exclusively
derived from the messages that was supposedly sent by the
OTP. Let assume that OTP sends X = f ′(NP⊕ti⊕s1)(s2), then
the key would be obtained by decrypting the received message
s2 = f ′−1(NP⊕ti⊕s1)(X). Nevertheless, the receiver (tag) can not
check neither the correctness of the new key nor the source of
this message – it incorrectly assumes that all messages come
from a honest OTP. These bad properties can be exploited by
an attacker against the protocol as explained below.

Simply, and due to the resemblance with the KP-protocol,
the adversary could follow the same strategy. She intercepts
the tuple (NP , f

′
(NP⊕ti⊕s1)(s2)) sent by a honest TTP and

changes this by a random pair x, y completely different to
the values intercepted (i.e., (x, y) 6= (NP , f

′
(NP⊕ti⊕s1)(s2))).

As consequence of this, the tag would update its secret key
(s′2 = f ′−1(x⊕ti⊕s1)(y)) with the key sent by the supplanted TTP
– the attacker. So, there would not be a match between s′2
and the records (s2, s1) kept by the TTP. The probability of
success in this attack is almost one (1−2−n+2), being n the bit
length of si, and it renders the tag inaccessible to the honest
TTP in future communications.

V. DE-SYNCHRONIZATION ATTACK AGAINTS ZHOU et al.’S
OWNERSHIP TRANSFER PROTOCOL

Zhou, Yoon and Piramuthu [8] have considered a case
that includes third party logistics providers and their role in
temporary ownership transfer of items in a distributed health-
care supply chain environment. Hence forth this protocol is

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 5

denoted by ZYP-protocol. In this protocol, the authors consider
the simultaneous RF access of an RFID-tagged object by the
object’s owner and a temporary owner which could be the
Third Party Logistics (TPL) provider. The protocol counts with
two keys to access the tag, a main key (K) for the owner and
a sub-key (ki) for the TPL provider. The protocol is depicted
in Fig. 4, but for more details we urge the reader to consult
the original paper [8, Sec. 2.4]. Note that fk(.) denotes keyed
(with key k) encryption functions and TPL provider is assumed
to be the one who transport the item between the two owners.

This protocol, includes four loops. The first loop occurs
between the current owner and the TTP . This is used by
the current owner to inform the TTP of the status change in
the RFID-tagged object with the main key K and the sub-key
ki−1 (i.e., this tagged object either changes ownership or goes
through a provider or both). The second loop includes the TTP
and the next owner, where the TTP generates a new main key
(K ′) and informs the latter of that new key. In response, the
new owner generates a new sub-key ki and sends it to TTP
in an encrypted token (i.e., fs⊕o(p⊕ ki) where p is a random
number generated by TTP , o is a random number generated
by the new owner and s denotes the shared key between the
TTP and the new owner). The third and fourth loops are used
by the TTP to inform the TPL provider and tag respectively
of the new key(s) for the tag. It must be noted, that the first
loop closed at the end of protocol.

To access the tag in the above mentioned protocol, the
ith owner is enforced to have knowledge of both main-key
and sub-key for communicating with the tag, which can be
replaced by the composite key, which might be obtained by
computing the bitwise XOR of both values: K ⊕ ki [8, Lats
Para. Sec. 2.4].

A. De-synchronization Attack

As described previously, once the tag updates its secret key
from ki−1 (old owner Ri−1) to ki (new owner Ri), it will
not be accessible by Ri any more, otherwise it would be
vulnerable to a window attack in which for a fraction time
both current and new owners could access to the tag [9].
On the other hand, the new secret ki is derived from the
message X = fs⊕o(p ⊕ ki) sent by Ri (i.e., ki = f−1s⊕o(X)).
Nevertheless, the protocol does not include any checking
mechanism to verify the origin and correctness of the extracted
ki value. That is, any value obtained from the TTP calculations
–decryption of X– is accepted without further checking and
used as the new secret, which is expected to have been shared
with Ri. An adversary could exploit this fault to render a tag
in a de-synchronized state and consequently the OT system.
The procedure is described below.

An adversary intercepts the pair (o, fs⊕o(p⊕ki)) sent from
the ith owner to the TTP and replaces it by any chosen pair
(x, y) such that (x, y) 6= (o, fs⊕o(p⊕ ki)). For this, the TTP
is deceived to force the tag to update its current sub-key into
k′i = f−1s⊕x(y). This new key k′i does not match any of the
owners’ sub-keys related to this tag (new ki and old ki−1). The
probability of success in this proposed attack is 1 − 2−n+2,
where n represents the bit length of k. Therefore, following

this attack, the tag would update its secret key to a value
that neither new owners nor old owner would have knowledge
of it and would render it inoperative for future-legitimate
communications. The success probability of the given attack
is almost one and the attack only requires the intervention in
one protocol execution. We emphasize here that TTP has the
knowledge of the new sub-key k′i = f−1s⊕x(y) and it could
update the tag sub-key. Nevertheless, it is not clear whether
it is viable for some of the owners to convince the TTP to
change the tag sub-key while she can not prove her privilege
over the tag – the supposed owner does not have knowledge
of the mentioned sub-key. Note that the main-key and the sub-
key are mandatory for communicating with the tag. Even in
the case that the TTP accepts to restart the whole protocol
under the above assumption, it would be a serious pitfall for
the protocol due to the lack of knowledge about one of the
keys is disregarded, which contradicts the initial assumptions
of the protocol and its claimed security properties.

VI. DISCUSSION

RFID protocols are prone to security pitfalls of every
kind. Among theses, de-synchronization attacks are the
most extended and commonly the first reported against new
proposals. Nevertheless, the attacks presented in this article
could have been prevented whether well-known principals
and guidelines for the design of cryptographic protocols
would have been followed. For instance, in 1996 Abadi and
Needham already introduced principles and guidelines for
designing secure cryptographic protocols [2]. More precisely,
they state eleven principles that we summarize bellow:

• Principle 1: Every message should say what it means.
• Principle 2: The conditions applicable to a message have

to be clearly set out in order its acceptability or not can
be evaluated by an external reviewer.

• Principle 3: If the identity of a principal is essential to
the meaning of a message, it should be included in the
message.

• Principle 4: Be clear about why encryption is being
done. Encryption is not cheap and is not synonymous
with security.

• Principle 5: When a principal signs a token that has
already been encrypted, it should not be inferred that the
principal knows the content of the message. Contrary to
this, we can infer that the principal knows the content of
the message when a principal signs a message and then
encrypts it.

• Principle 6: Be clear about what properties you are
assuming about nonces.

• Principle 7: If a predictable quantity (e.g., counter) is
used, it should be protect to avoid attacks such as replay
attacks.

• Principle 8: If timestamps are used, the differences
between clocks at various entities must be much less than
the allowable age of a message deemed to be valid.

• Principle 9: Recent use of a key does not guarantee to
be enough fresh neither its security.

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 6

• Principle 10: The encoding mechanism has to be public
and well-known.

• Principle 11: The protocol designer should know which
trust relations her protocols depends on, and why the
dependence is necessary.

Among them, appropriate consideration of Principle 3 can
help to guarantee the integrity of the received message. On the
other hand, it is well known that encryption by itself does not
guarantee the integrity of the received message [7]. A good
example of that could be One-Time-Pad (OTP), an encryption
system with perfect security. In OTP if you change any bit
of the output, a bit of the retrieved plain text will change,
and the recipient has no way to detect this. As shown in
previous sections, the four analyzed protocols miss the above
mention considerations being susceptible to desynchronization
attacks. Taking into consideration Principle 3, suggested by
Abadi and Needham, could have avoided the problem. More
precisely, describing the original protocols in general terms
and assuming that two entities (A and B) share two keys (K1

and Knew) the following message would be exchanged for the
ownership transfer:

A → B : X = fK1
(Knew)

B : K1 = Knew

where f symbolizes an encryption function.
Nevertheless, the sending of X message neither guarantees

its origin nor its integrity. Essentially, under this design
assumption, the receiver would be forced to accept as valid
all the messages received. This fault has been exploited in the
proposed attacks.

Taking into account the considerations of Principle 3, the
attacks could have been prevented by adding the sender
signature at the end of the message in order to guarantee the
source of the message and also provide the message integrity
checking:

A → B : X = fK1
(Knew)‖Y = HMAC(K1,Knew)

B : K1 = Knew

where HMAC symbolizes a Hash-based Message Au-
thentication Code and ‖ represents the concatenation oper-
ation. When A sends this message, B can discover Knew,
know that A signed the message and check the integrity of
Knew. Assuming HMAC complaints with the RFC 2104 (i.e.
HMAC(K, text) = H(K⊕opad,H(K⊕ ipad, text), where
H and K denote a cryptographic hash function and a secret
key respectively (please review [6] for more details), it means
that B is certain that A knows Knew.

Summarizing, the attacks presented in this article can be
prevented with minor changes in the initial designs. The design
of a new cryptographic protocol is quite challenging and
the designers should check its conformance with well-known
principles of design – formal methods are also useful tools.
These principles are neither necessary nor sufficient but are
very helpful to prevent straightforward errors.

Remark 1: It must be noted that just using the message
signature to fix the vulnerability of the analysed protocols

would not be enough. For instance, with only including
signature of the message in the revised protocol, it would
be possible to mount a desynchronization attack as described
below:

1) When A sends to B message X =
fK1(Knew)‖HMAC(K1,Knew), the adversary
logs the message and blocks it.

2) Since the ownership transfer has not been finished
successfully, A sends to B a new message X ′ =
fK1

(K ′new)‖HMAC(K1,K
′
new).

3) Adversary intercepts the new message X ′

and replaces it by the logged message
X = fK1

(Knew)‖HMAC(K1,Knew).
4) B receives X and updates K1 to Knew while A expects

K ′new.
The same attack is applicable to the original version of

KP, KZP and ZYP protocols. The complexity of this attack
over these schemes is two protocol executions and the success
probability is also almost 1. A solution could be keeping the
new key fixed but randomizing sessions by nonces contributed
by both protocol parties.

VII. CONCLUSION

In this article we analyze the security of four protocols that
have been recently proposed for RFID systems and whose
authors claim to be secure against common RFID attacks –
including expressly desynchronization attacks. Nevertheless,
we show efficient desynchronization attacks against this range
of schemes, having high success probability (∼ 1) and negligi-
ble complexity (one protocol execution). As shown in Section
VI, the authors missed well-know principles for designing
cryptographic protocols. Therefore, new security protocols
should be checked from an informal (using well-established
principles and guidelines) and a formal perspective (e.g., BAN
logic).

ACKNOWLEDGEMENTS

This work was supported by the MINECO grant TIN2013-
46469-R (SPINY: Security and Privacy in the Internet of You).

REFERENCES

[1] AES Calculator. http://testprotect.com/appendix/AEScalc.
[2] M. Abadi and R. Needham. Prudent engineering practice for crypto-

graphic protocols. IEEE Trans. Softw. Eng., 22(1):6–15, Jan. 1996.
[3] G. Kapoor and S. Piramuthu. Single RFID Tag Ownership Transfer

Protocols. IEEE Trans. on Sys., Man, and Cyber. PART C: Applications
and Reviews, 42(2):164–173, 2012.

[4] G. Kapoor, W. Zhou, and S. Piramuthu. Multi-tag and multi-owner
RFID ownership transfer in supply chains. Decision Support Systems,
52(2):258–270, 2011.

[5] G. Khan and M. Moessner. Secure authentication protocol for rfid
systems. In 20th International Conference on Computer Communications
and Networks (ICCCN) 2011, pages 1–7, 2011.

[6] H. Krawczky, M. Bellare, and R. Canetti. Network working group: RFC
2104. pages 1–12, 1997.

[7] H. Shacham, D. Boneh, and E. Rescorla. Client-side caching for TLS.
ACM Trans. Inf. Syst. Secur., 7(4):553–575, 2004.

[8] W. Zhou, E. J. Yoon, and S. Piramuthu. Simultaneous multi-level RFID
tag ownership & transfer in health care environments. Decision Support
Systems, doi:10.1016/j.dss.2012.04.006, 2012.

[9] Y. Zuo. Changing hands together: a secure group ownership transfer
protocol for RFID tags. pages 1–10, 2010.

EMPLOYING A SECURE CIPHER DOES NOT GUARANTEE THE SECURITY OF RFID PROTOCOLS 7

Masoumeh Safkhani is Assistant Professor at Electrical Engineering De-
partment, Shahid Rajaee Teacher Training University, Tehran, Iran. She is
the author of 10 articles in cryptology. Her current research interests include
RFID security.

Nasour Bagheri is Assistant Professor at Electrical Engineering Department,
Shahid Rajaee Teacher Training University, Tehran, Iran. He is the author of
over 50 articles in information security and cryptology.

Pedro Peris-Lopez is Visiting Lecturer in the Computer Security (COSEC)
Lab at Universidad Carlos III de Madrid, Spain. He holds a M.Sc. in Telecom-
munications Engineering and a Ph.D. in Computer Science from Universidad
Carlos III de Madrid. His research interests are in the design and analysis of
cryptographic protocols and primitives and in lightweight cryptography. His
current research is focused on Radio Frequency Identification Systems (RFID)
and Implantable Medical Devices (IMD). In these fields he has published
many papers over the last years in specialized journals and conference
proceedings.

Juan E. Tapiador is Associate Professor of Computer Science in the
Computer Security (COSEC) Lab at Universidad Carlos III de Madrid, Spain.
Prior to joining UC3M, he was Research Associate at the University of York,
UK. His work back there was funded by the ITA project (www.usukita.org), a
joint effort between the UK Ministry of Defence and the US Army Research
Lab led by IBM. His main research interests are in computer/network security
and applied cryptography. He holds a M.Sc. (2000) and a Ph.D. (2004) in
Computer Science from the University of Granada.

