
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

An Estimator for the ASIC Footprint Area of
Lightweight Cryptographic Algorithms

Honorio Martı́n, Pedro Peris-Lopez, Juan E. Tapiador and Enrique San Millán

Abstract—In resource-constrained devices such as RFID tags
or implantable medical devices, algorithm designers need to make
careful choices to ensure that their proposals are sufficiently
efficient for the target platform. A common way of expressing
such restrictions is in terms of an upper bound for the maximum
available footprint area in gate equivalents (GE). For example,
RFID tags conforming to standards EPC Class-1 Generation-
2 and ISO/IEC 18000-6C can devote up to 4K GE to security
functions. However, in most cases algorithm designers are not
hardware experts, nor they have any quantitative means to
find out how much area their designs would occupy in a given
technology. In this paper, we attempt to fill this gap by providing
an estimate of the upper bound for the footprint area of any
algorithm. Our approach takes into account the main components
of such algorithms, namely basic arithmetic/logic operations
and additional hardware such as registers and multiplexers.
We believe that our proposal can help designers in making
informed decisions about what kind of algorithmic structures
can be afforded for a target environment.

Index Terms—ASIC implementations, Footprint area, RFID,
VHDL, Lightweight algorithms.

I. INTRODUCTION

RADIO Frequency Identification (RFID) technology,
which uses radio signals for automatic identification, has

experienced a notable growth in the last years [1], [2], [3].
An RFID tag responds to a reader request by using the radio
channel and including in its answer a value that allows its
unequivocal identification. This value is generated by the tag
and should be protected to guarantee the privacy of the tag
holder. The security of RFID systems is a challenging prob-
lem, particularly for low-cost devices such as those covered
by the EPC Class-1 Generation-2 [4] and ISO/IEC 18000-
6C [5] standards. This is usually achieved by incorporating
some cryptographic modules [6], [7], [8] upon which security
services can be provided through different protocols (see, e.g.,
[9], [10], [11], [12]).

A major difficulty in providing RFID tags with security
functions comes from the scarcity of computational resources
available in such platforms (see, e.g. [13], [14], [15], [16] for
recent developments in the design of tiny tags). For example,
in a low-cost RFID tag the Gate Equivalents (GE) that can be
allocated to security issues have to be in the range between 250
and 4K GE, which restricts affordable solutions to lightweight
algorithms only.

H. Martin and E. San Millan are with the Department of Elec-
tronic Technology, Carlos III University of Madrid, Spain e-mail:
{hmartin,quique}@ing.uc3m.es

P. Peris-Lopez and J. E. Tapiador are with the Computer Secuirty Lab,
Carlos III University of Madrid, Spain e-mail: {pperis,jestevez}@inf.uc3m.es

Proposals in the area of lightweight cryptography have
proliferated over the last years, but most of them do not
provide results regarding their implementation. In many cases,
arguments in favor of their lightweightness are based on
the use of some operations that are generally considered
inexpensive. However, this assumption is not always true, and
the implementation of some proposals have shown that the area
limit of 4K GE is often surpassed. In other cases, the design
turns out to be not so lightweight because of factors such as
the bit length of the variables, the need for additional memory
blocks –which is usually missed in the analysis of resources–
, and the overhead imposed by selection and control logic.
These and other aspects often make the final gate count much
higher than expected.

All in all, providing accurate estimates of the footprint
area of an ASIC implementation is a hard task for algorithm
designers [17], [18], [19]. More often than not, designers do
not have the hardware design skills nor the tools required to
implement and analyze their proposals. Furthermore, there is a
lack of a standard methodology to provide such an estimation,
as the result will vary depending on factors such as the chosen
architecture, the manufacturing technology, the possibility of
introducing optimizations at various levels, etc. Problems such
as this are common in other related areas. For example,
designing low-power embedded systems [20], [21], [22] is
also a major problem nowadays, and system designers face
a situation similar to that described above. Very recently, Ben
Atitallah et al. [23] have presented a methodology to provide
designers with an estimation of the power consumption of
a complete system. Similarly, in this paper we propose a
relatively simple estimator for the footprint area occupied
by the ASIC implementation of an algorithm. The suggested
formula requires the designer to know only a few high-level
details about the target implementation, such as the number
of registers used to store inputs, outputs and intermediate
variables, and some parameters related to the control struc-
tures. In principle, our work is motivated by and focussed on
lightweight cryptographic algorithms for constrained platforms
such as RFID tags or implantable medical devices. Despite
this, we believe our approach could be easily extended to non-
security designs by incorporating additional factors into our
methodology.

The rest of this paper is organized as follows. In Section
II we provide an overview of the main basic operations that
can be used in lightweight algorithms, and in Section III we
show the hardware architectures employed to implement them.
Section IV discusses our results synthesizing basic operation
blocks using two real manufacturing libraries. Subsequently, in

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

2 SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Section V we present a method to estimate the footprint area of
a whole algorithm and discuss our experimental results with a
battery of real-world examples. Finally, Section VI concludes
the paper and summarizes our main contributions.

II. ELEMENTS IN LIGHTWEIGHT CRYPTOGRAPHY

In this section, we briefly introduce the usual operations
found in lightweight cryptographic primitives and protocols.
This will serve to motivate our subsequent footprint analysis
for individual building blocks.

A. Basic Operations

As in the case of regular security functions, lightweight
cryptographic primitives and protocols aim at providing basic
constructions to guarantee properties such as the confidential-
ity, integrity and authenticity of data exchanged in commu-
nications. In this case, however, the shortage of resources in
the platforms severely limits the sort of processing that can be
afforded. Thus, most proposals attempt to rely only on a few
bitwise operations (e.g., XOR, OR, AND, shifts and rotations)
and inexpensive arithmetics such as addition modulo 2m.

In [24] a sort of mapping called triangular functions (T-
functions) was introduced. In particular, a T-function is a p×p
mapping that does not propagate information. Thus, for each
0 ≤ i ≤ p, the i-th bit of the output is a function of the current
and previous input bits (0, 1, . . . , i) only. Bitwise operations,
such as for example NOT, XOR, OR and AND, and many
others found in modern processors (e.g. addition, subtraction
and multiplications) are all T-functions. Furthermore, the com-
position of T-functions is also a T-function.

Secure cryptographic primitives and protocols cannot be
designed by using T-functions only. A T-function has poor
diffusion, as it does not propagate information from right
to left and, besides, its period is predictable [25]. As a
consequence, T-functions are not the only operations that are
usually found on lightweight cryptographic algorithms. For
instance, in [26], [27] sound arguments are given for mixing
triangular and non-triangular functions in order to design more
secure ultra-lightweight protocols.

One of the most common non-triangular function used
in cryptography is the rotation operation. Rotations can be
performed in several ways. For instance, rot∗(x, y) applies a
circular left shift to the bits of x by a number of positions given
by wht(y) (the Hamming weight of the second operand y).
Alternatively, using the classical definition, rot(x, y) applies
a circular left shift to the bits of x by y mod N , where N
represents the bit length of variables x and y. Choosing a par-
ticular N determines the lightweight nature of this operation.
For example, if N is a multiple of 2n, then rot(x, y) can be
implemented very efficiently since it reduces to shifting the
first argument n positions to the left; otherwise, it becomes
more complex and requires a larger footprint area.

B. Storage and Control

Apart from arithmetic and logical operations, cryptographic
algorithms also require additional hardware resources to store

results and control the execution flow. Such elements are
nearly always registers and multiplexers. Registers help to
maintain the “state” of the algorithm by storing intermediate
and final results, and also by supporting the control functions.
Multiplexers are used to select among different inputs accord-
ing to some condition, and are instrumental in any algorithm
that incorporates a minimum flow complexity (i.e., “for” and
“while’ loops, “if” conditions, etc.).

In general, the area occupied by registers and multiplexers
is critical, and any good design should find a balance between
the amount of basic operations and memory/control logic. It
is quite common to find proposals where authors only analyze
the complexity of their designs by just counting the amount of
operations. While this might be useful to determine the time
complexity of the algorithm, ignoring memory and control
requirements could be very misleading in terms of the final
footprint area of the circuit. In fact, in many cases the area
required by these elements is much larger than that demanded
by the arithmetic and logical components.

III. HARDWARE IMPLEMENTATION OF BASIC OPERATIONS

We next analyze various design elements and their area esti-
mation depending on the complexity of their implementation.
For low-complexity blocks, we propose a simple architecture,
while for those with higher complexity we discuss and propose
several possible architectures.

A. Elements with a Low Complexity Implementation

In this categroy we include elements that have a straightfor-
ward implementation with very low complexity. We consider
here some T-functions, such as simple bitwise operations and
addition mod 2m, and also registers and multiplexers.

In terms of bit length, it is common to find implementations
tailored for 96 bits, as it is a common bit length widely used
in low-cost RFID tags such as for example those compliant
with EPC Gen-2 standard. However, we choose to study these
elements specifically for arbitrary bit lengths, expressing the
results as a function of a constant K. These constants will
subsequently be used to obtain area estimations for more
complex constructions.

For the above mentioned bitwise operations, we explore
different design strategies that trade area off against through-
put. In general, such strategies consist of using a block with
a reduced bit length and consuming several clock cycles to
obtain the final result. For example, an algorithm using an
N -bit XOR block can be reduced to an n/2-bit block that
needs two clock cycles to obtain the result. We note, however,
that such block reductions involve the use of additional mul-
tiplexers for the control logic. Thus, it is necessary to find a
trade-off between the reduction and the necessary extra logic.
Moreover, reductions incur a drop in throughput, which should
be properly accounted for if we are to met any restrictions
imposed by the operational environment. For instance, taking
as reference the performance criteria of an RFID system that
demands a minimum reading speed of at least 150 tags per
second [28], [29], we need to carefully calculate the affordable
block reduction to fulfil this reading rate requirement. We

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

3

XORN

N

N

XORN/2

N/2

N/2

MUX

.

.

.

MUX.
.

.

DEMUX

..

.
.

N/2

N/2

N/2

N/2

N/2

N/2

A) B)

Fig. 1. Architectures for an XOR block.

Fig. 2. Combinational Multiplier Architecture.

finally note that this strategy can be also used with other
operations such as, for example, additions.

For illustration purpuses, in Fig. 1(a) we show the scheme
of an N -bit XOR block. Fig. 1(b) shows the result after
halving the XOR block (N/2 bits) and introducing additional
multiplexers to select inputs and outputs.

B. Multiplication Operation

In this section we explore different hardware architecture to
implement multiplication, including 1) a combinational archi-
tecture; 2) a shift-and-add architecture; and 3) the Karatsuba-
Ofman architecture [30], [31].

1) Classical Combinational Multiplication: The most
straightforward approach to implement a multiplier requires
combinational logic only. The overall multiplication can be
split into various partial multiplications followed by additions
to sum the partial results. This alternative is the fastest in terms
of throughput, but it has a high cost regarding the size of the
circuit. Fig. 2 shows the needed hardware to implement a 4×4
bit multiplier of unsigned binary operands.

In Fig. 3, we show the internal structure of a basic cell.
This cell includes and AND gate that computes the product
of each bit of the multiplier qj with the corresponding bit of
the multiplicand mj . The output of this product is one of the
inputs to a Full Adder (FA), the other two operands being the
corresponding bit from the previous partial product (Ppi) and
the carry (c) generated in the previous stage.

2) Classical Shift and Add Multiplication: The hardware
footprint required by the combinatorial approach can be re-
duced by iterating the multiplication of the multiplicand by

FA
OUT IN

c

qiqi

Ppi+1

mj

mj

c

Ppi

Fig. 3. Basic Cell of Combinational Multiplier.

MULTIPLICAND

SHIFT LEFT

64 bits

ALU

PRODUCT

WRITE

MULTIPLIER

SHIFT RIGHT

CONTROL

TEST

64 bits

64 bits

32 bits

Fig. 4. Shift and Add Multiplier.

each bit of the multiplier and storing the partial results in
a register. Since in each iteration the multiplier is a power of
two, the partial multiplications can be implemented by just left
shifting a register, which is very efficient in terms of clock cy-
cles. To complete the architecture, as shown in Fig. 4, we need
an adder to sum all the partial multiplications and a control
unit to supervise the whole process. This approach turns out
to be very efficient in terms of consumed hardware, but offers
a low throughput due to its iterative nature. More precisely,
assuming N -bit operands, this architecture consumes N clock
cycles.

3) Karatsuba-Ofman: The Karatsuba-Ofman algorithm
[30] achieves a trade-off between the chip area and the
consumed clock cycles by dividing the 2n-bit multiplication
problem into smaller n-bit multiplication sub-problems, plus
several n-bit additions and subtractions. Assume two 2n-bit
integers X and Y . Each integer can be split into two n-bit
parts: a highest part (i.e., XH and YH) and a lowest part (i.e.,
XL and YL). Now, X and Y can be expressed in terms of

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

4 SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

their respective parts as:

X = XH · 2n +XL (1)
Y = YH · 2n + YL (2)

The product of X and Y can be now rewritten in terms of
XH , YH , XL, and YL as:

X · Y = (XH · 2n +XL) · (YH · 2n + YL) (3)
= 22n(XHYH) + 2n(XHYL +XLYH) +XLYL

Note that the second term in expression (3) can be, in turn,
represented in terms of the first and third terms:

XHYL +XLYH = (4)
(XH +XL)(YH + YL)−XHYH −XLYL

In summary, the Karatsuba-Ofman algorithm computes the
multiplication of two 2n-bit operands by calculating three n-
bit multiplications as:

X · Y = 22n(XHYH) +XLYL + (5)
2n(XH +XL)(YH + YL)−XHYH −XLYL

We have analyzed two different architectures for implement-
ing the Karatsuba-Ofman multiplication, which mainly differ
on the mechanism used to compute each n-bit multiplications.
The first one relies on an n-bit combinational multiplication
and calculates each multiplication in one clock cycle. The
second architecture uses an n-bit shift and add multiplication,
which is more efficient in terms of chip area but takes several
clock cycles to complete each multiplication.

C. Modulo Reduction

Modulo reductions are common in modular multiplications,
and also appear in rotations like the rot∗(x, y) discussed
above. The hardware needed for its implementation depends
on the value of the modulo. Given two positive numbers P
(dividend) and N (divisor), P mod N outputs the remainder
of dividing P by N . This operation is very lightweight when
N is a multiple of 2n, since in that case the division reduces
to various right shifts only. When this is not the case, a more
general algorithm is required.

The modulo operation involves computing a division, which
is an operation more complex than the multiplication. One
straightforward algorithm is the so-called Naive Reduction,
which shifts and subtracts the modulus until the remainder is
obtained. Implementing Naive Reduction requires a subtractor,
a comparator and an n-bit register, but it consumes a large
amount of clock cycles (2n). A different alternative is offered
by a procedure known as Non Restoring Reduction (see Fig.
5), which is much more efficient in terms of clock cycles
(approximately n instead of 2n) but consumes more hardware.

Some algorithms apply a modulo reduction to the result of a
multiplication. There are special implementations to optimize
these combined operations, often involving the Montgomery
modular multiplication algorithm with some convenient archi-
tecture [32]. In any case, these operations cannot be regarded
as “lightweight” as we understand the term in this paper, so
we will not study them in detail.

Qß Dividend

Contß0

Aß0

DßDivisor

Shift to the left A,Q

AßA-D

A< 0

Qß1 Qß0

AßA+D

Cont=n-1 ContßCont+1

END

NO YES

NO

YES

Fig. 5. Non Restoring Reduction Algorithm.

IV. AREA RESULTS FOR LOW-COMPLEXITY ELEMENTS

As discussed above, one major goal of this work is to
provide an estimation of the area required by a lightweight
cryptographic algorithm as a function of some high-level
parameters. In these applications, it is crucial to keep in mind
that circuits predominantly operate at low frequencies. For
instance, many RFID tags function at 100 KHz. Note that
the 100 kHz frequency refers to the clock included in the tag
circuit, not to the communication band that is generally in
the 860-960 MHz range for EPC C1-G2 tags. As the clock
frequency is fixed, most restrictions in these designs relate to
area and power consumption.

In this paper, we report results obtained with two specific
manufacturing libraries. A priori, it is unclear to us the extent
to which our conclusions generalize to other manufacturing
technologies. The results, however, are still useful to compare
different algorithms and classify them as lightweight or not.
Furthermore, the methodology is general and can be easily
extended to other libraries.

A. Experimental Framework

The experimentation has been conducted with two CMOS
libraries: Faraday UMC 90 nm [33] and AMI 0.35 µm [34].
One key reason behind this decision is that these libraries
provide comprehensive information about the layout of basic
cells. For our purposes, this is essential to obtain a realistic
estimate of the area occupied by an algorithm. To synthesize
each design we used Synopsys [35], which is one of the most
commonly used synthesizers.

The operation frequency is set to 100 KHz. As mentioned
before, this is quite a common value for passive RFID tags.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

5

TABLE I
GES FOR LOW-COMPLEXITY ELEMENTS

U
M

C
90

nm

Lib. Element 32 bits 64 bits 96 bits 128 bits Ki

AND 39.70 79.39 119.08 158.78 K1=1.24
OR 39.70 79.39 119.08 158.78 K2=1.24
XOR 79.39 158.78 238.17 317.56 K3=2.48
ADD 239.66 477.84 716.01 954.19 K4=7.45
Multiplexer 71.00 143.00 214.00 285.81 Kmux=2.23
Register 147.00 287.00 441.00 588.24 Kreg=4.59

A
M

I
0.

35
µ
m AND 42.66 85.33 127.99 170.64 K1=1.33

OR 53.33 106.65 160.03 213.22 K2=1.66
XOR 74.66 149.34 224.00 298.70 K3=2.33
ADD 203.35 406.00 608.69 811.32 K4=6.34
Multiplexer 85.33 170.66 256.00 341.55 Kmux=2.66
Register 214.33 435.66 651.66 869.00 Kreg=6.77

Power supply is fixed by the library (1.2 V). As for the
synthesis with Synopsys, after experimenting with different
configurations we observed that the best results are obtained
with the medium effort option in area, delay and power
consumption. These options are set for all the experiments.

Finally, the area results are provided using Gate Equivalents
(GEs), which is the normalization commonly used for these
applications. Using GEs facilitates comparisons among differ-
ent implementations since the obtained values are independent
of the chosen technology. To compute the GE value, the area
of the whole circuit is divided by the area of a basic NAND
gate. For example, 1 GE for the UMC 90 nm takes 3.16 µm2.

B. Results
Table I summarizes the area results (in GEs) obtained after

synthesizing with Synopsis the set of basic elements for UMC
90 nm and AMI 0.35 µm libraries. In this first analysis,
the hardware architecture considered performs all operations
(combinational or just registers) in one clock cycle. As shown
in Fig. 6, the area occupied by each element increases linearly
in the length (in bits) of variables. The results obtained for
the AMI 0.35 µm library are almost equivalent and follow
a similar pattern. This simplifies considerably the analysis
of more complex algorithms, as it allows us to associate a
constant value, named Ki for element i, giving the area per
bit for each element.

From these results we can extract some conclusions:
1) The adder occupies significantly more area than bitwise

operations. Consequently, if the area of an algorithm
needs to be optimized, it is more appropriate to focus
on additions rather than concentrating on low complexity
elements such as bitwise operations. As all operations
are done in one clock cycle, one possibility to optimize
the area would be to use an element with lower bit length
and carry out the operation in various clock cycles. For
example, variables can be split into two parts with half
of the bits each and a half-length adder can then be
applied over each part. Note, however, that in doing this
we need to include additional elements, namely registers
to store partial results, multiplexers to choose between
different signals, etc.

2) The area cost of registers is also noticeable. Taking into
account that we generally can devote just a small area

32 64 96 128
0

100

200

300

400

500

600

700

800

900

1000

Bit length

G
E

AND/OR

XOR

ADD

Multiplexers

Registers

Fig. 6. GE for low complexity elements as a function of the number of bits
for UMC 90nm library.

to security subsystems (e.g., up to 4K GEs in most
passive RFID tags), and that roughly 50% of it is used
for storage, this means that at most five 96-bit registers
could be used.

3) As for multiplexers, their cost in terms of area is small.
These elements are needed in algorithms with loops
(e.g., “for” and “while” iterations) and also when a
input/output is selected among different signals.

Overall, it can be concluded that designers will necessarily
face some trade-offs among operations and the amount of
registers and multiplexers required. As a general rule, bigger
building blocks (i.e., using a larger bit length) will require less
extra registers/multiplexers, and vice versa.

C. Further Operations: Multiplication and Modulo Reduction

We next explore the area required by two operations that
have been extensively used in many cryptographic algorithms:
multiplication and reduction modulo N . The figures, both the
number of GEs and the associated clock cycles required to
complete the operation, are shown in Table II for the UMC
90 nm and the AMI 0.35 µm libraries.

In general terms, multiplication cannot be regarded as a
lightweight operation no matter what architecture is chosen,
since it demands more than the 4K GEs often required in
environments such as RFID systems (96 bits). That being said,
it is worth-noting that some trade-offs also appear here. The
combinational architecture offers the best performance speed-
wise, but it demands too much area. Conversely, the Shift-and-
Add option is much more efficient in terms of area, but the
number of clock cycles requires may be prohibitive for many
applications. K-O architectures fall somewhere in between of
these two alternatives.

Modulo reduction is a special case. As discussed before,
it is very lightweight when the bit length N is a power of

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

6 SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE II
GES FOR DIFFERENT MULTIPLICATION ARCHITECTURES AND MODULO

REDUCTION

U
M

C
90

nm

Lib. Operation 32 bits 64 bits 96 bits 128 bits Cycles

MULT (Comb.) 9345 36507 81268 144452 1
MULT (S+A∗) 2078 4113 6146 8164 N
MULT (K-O†, Comb) 5744 16055 30853 49868 10
MULT (K-O†, S+A∗) 4731 9367 13995 18566 N

2 + 4
Modulo reduction – – 3967 – 96

A
M

I
0.

35
µ
m MULT (Comb.) 10223 36495 81007 143436 1

MULT (S+A∗) 2464 4840 7227 9639 N
MULT (K-O†, Comb) 6621 17093 32123 51132 10
MULT (K-O†, S+A∗) 5882 11610 17341 23111 N

2 + 4
Modulo reduction – – 4729 – 96

†K-O: Karatsuba-Ofman multiplier ∗S+A: Shift-Add multiplier

two, as it can be implemented simply as various right shifts.
Otherwise, such as for example for N = 96, its area takes
around 4K GEs. Thus, our recommendation is to include it
only when the resources required by this operation can be
reused in other parts of the algorithm.

V. ESTIMATING THE AREA OF LIGHTWEIGHT
ALGORITHMS

Estimating the area that an implementation of an algorithm
can occupy is quite challenging because it depends on many
factors: the architecture(s) chosen by the designer, the specific
constraints, the manufacturing library, the basic cells used by
the synthesis tool, etc. In this section, we first propose an
expression that estimates the total area required by a hardware
implementation of an algorithm. Subsequently, we check its
validity by comparing its predictions with the actual area
obtained with a battery of examples and provide a refinement
of our estimator. Note that we have discarded the use of mul-
tiplication since this operation consumes resources in excess
(>4K GEs) to be categorized as a lightweight operation. Re-
garding modulo reduction, its usage in a lightweight algorithm
is conditioned to be a power of two (i.e. 2n); otherwise it
demands more than 4K GEs and using it is infeasible. In case
of being a power of two, the operation does not consume any
extra hardware resources, but requires an upper bound of n
clock cycles to compute it.

A. A Linear Estimator

The total area occupied by an algorithm can be roughly
divided into two main blocks: datapath and control. The
datapath contains the hardware for the different operations
required and registers to store inputs, outputs and intermediate
results. In many lightweight cryptographic algorithms, the
datapath accounts for a significant fraction of the total area,
generally around 80% [36] [37].

Our estimate is based on the following rationale. As we
previously pointed out, the final footprint depends on the
chosen architecture. In turn, opting for one architecture or
another depends on the goals and restrictions faced by the

designer. For example, in very constrained devices (such
as RFID tags or some sensor nodes) minimizing the area
is a priority, which heavily influences the decision. Since
throughput is often a limiting factor too, one sensible choice
is an architecture that optimizes the area without penalizing
throughput too much. In general, such a design contains one
single block of N bits for each basic operation needed, plus
registers to store data and multiplexers to select inputs and
outputs.

Based on the previous considerations, we propose a simple
linear estimate for the area of the datapath, measured in GE, as
a function of the bit length and the number of basic operations,
registers and multiplexers:

FDP = N ·
[4∑
i=1

Ai·Ki+(B·Kreg)+

(
(C+D)·Kmux

)]
(6)

where:
• N is the bit length of the variables.
• Ai is a parameter dependent on the chosen architecture

for the datapath (i = 1 for AND, i = 2 for OR, i =
3 for XOR, and i = 4 for ADD). As discussed above,
the implementation can range from a fully combinational
design to one using smaller operators but requiring more
clock cycles. Thus, we measure Ai as the number of N -
bit operators.

• Ki is the area cost for the i-th operation, as shown in
Table I.

• B is the number of variables that require storage.
• Kreg is the area cost for each register.
• C is the number of multiplexers necessary to select

different inputs for the operation blocks. When the block
has more than two inputs, C is the number of inputs
minus one.

• D is the number of multiplexers necessary to select
different inputs for each register. If the algorithm is given
in pseudocode, D can be easily estimated as the number
of assignments made for each variable.

• Kmux is the area cost for the multiplexers.
Obviously, expression (6) only factors in those elements

studied in Section IV. However, it can be extended without
difficulty to any other blocks that conform to the design
rationale given in the paragraph above.

Finally, as the area of datapath and control are in most cases
related, we express the total area as:

F = (1 + ω) · FDP (7)

where ω is an overhead factor accounting for the control part
(e.g., ω = 0.2 assuming that control logic accounts for 20%
of the total area).

B. Experimental results

We have tested our estimator against a library contain-
ing 120 lightweight functions. The algorithms are named
F1, F2, . . . , F30 and were synthesized for four different bit
lengths: N = 32, 64, 96, and 128 bits. Each function returns a
single final output value denoted Z and uses several input and

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

7

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Function index

G
a

te
 E

q
u

iv
a

le
n

ts
 (

G
E

)

Estimated

Real
128 bits

96 bits

32 bits

64 bits

Fig. 7. Real and estimated footprint area (ω = 0.2).

intermediate variables, represented by Xi and Yi, respectively.
The dataset is well balanced, containing 10 functions with 2
inputs, 10 functions with 4 inputs, and another 10 functions
with 6 inputs.

In Fig. 7 we compare the estimated area for all the datasets
functions using (7), assuming a control overhead ω = 0.2, ver-
sus the actual area given by Synapsis after synthesizing each
function. For simplicity, we only show the results obtained for
the UMC 90 nm library. As suggested by Tables I and II, the
results for the AMI 0.35 µm are completely equivalent, and
our experimentation confirms this. The approximation is quite
precise, with differences becoming greater when the number
of bits N increases. In Fig. 8 we show histograms of the
estimation errors for different bit lengths. For N = 32 and 16
bits, errors are bounded by 500 GE and 1K GEs respectively.
This error increases to 1.5K GE and 2K GEs for N = 96
and 128 bits, respectively. Thus, chosing a high value for the
control overhead (20%) in Equation 7 does not minimize errors
but guarantees an overestimation of circuit area.

Further investigations reveal that the overestimation does
not come from expression (6), but from (7). In other words,
the estimate for the datapath area is fairly accurate, but the
amount of control logic does not generally increase linearly
with the number of bits. For instance, a Finite State Machine
(FSM) controlling some parts of an algorithm does not need
more states when variables increase their size. That being said,
we emphasize that our choosing of (7) may still be valid for
constrained designs, where N often varies between 32 and
512, interpreting the result as an upper bound.

C. Adjusting control overheads

As discussed in Section V-A, the datapath and control areas
are in most cases related. In the model presented above we
made the assumption that the relation is linear, in particular
with the control logic being a fraction (1 +ω) of the datapath
area. The experimental results discussed above show that this

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

−1000 −500 0 500 1000 1500 2000 2500
0

2

4

6

Estimation Error (in GE)

128 bits

96 bits

64 bits

32 bits

Fig. 8. Distribution of gate count estimation errors (ω = 0.2).

assumption works relatively well for systems of up to 10K
GE, particularly with ω = 0.2. The estimation error becomes
more significant for bigger systems. This is reasonable, as as
increase in the datapath footprint does not necessarily translate
into a similar increase of control logic.

Using the dataset of designs described above, we have
numerically investigated more precise approximations for the
control overhead term used in (7). Two alternatives were
explored, both based on the idea that ω varies with some
system parameter. In the first one, we assumed that the control
overhead depends on the number of bits N , so the total area
is actually of the form:

F =

[
1 + ω(N)

]
· FDP (8)

whereas in the second alternative it is assumed that the amount
of control logic is a function of the datapath area:

F =

[
1 + ω(FDP)

]
· FDP (9)

The estimation of both functions ω(N) and ω(FDP) was
done by couching the problem as a nonnegative least-squares
curve fitting one of the form:

min
Ω
‖CΩ− d‖22 (10)

where Ω = (ω1, . . . , ωk)T , with ωi ≥ 0, represents the
sought function discretized in k values. Matrix C and vector
d contain, respectively, the actual datapath area and total area
obtained after synthesis.

We split the dataset of designs into two subsets. The first
one, used to estimate the overhead function (training) contains
80 randomly chosen (10 of each bit length) designs out the
120 available. The remaining 40 designs will be subsequently
used to test the obtained estimator. Thus, each one of the 80
synthesized functions used for training gives one equation for

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

8 SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE III
NUMERICALLY ESTIMATED CONTROL OVERHEAD FUNCTIONS

N ω(N)

32 bits 0.1518
64 bits 0.1186
96 bits 0.1192

128 bits 0.1103
‖residual‖22 3.36E+06

FDP ω(FDP)

0 - 2000 GE 0.1906
2000 - 4000 GE 0.1717
4000 - 6000 GE 0.1691
6000 - 8000 GE 0.1271

8000 - 10000 GE 0.1098
10000 - 12000 GE 0.0932
12000 - 14000 GE 0.0774

‖residual‖22 1.38E+05

(10), which are grouped into k bins. In the case of ω(N), we
chose k = 4 values (32, 64, 96, and 128 bits), whereas for
ω(FDP) we grouped equations into k = 7 intervals with a 2K
GE difference between each of them.

Using a standard numerical solver, we obtained the Ω-values
shown in Table III. Again, these figures correspond to the
UMC 90 nm library; those obtained for the AMI 0.35 µm
are very similar. Such overheads represent the best fit, in a
least-squares sense, for our experimental dataset. As observed,
in both cases the actual overhead is always below the fixed
ω = 0.2 value that was used before. Furthermore, it decreases
as circuits grow bigger, both in terms of N and in datapath
area, which conforms to our previous intuition. For example, in
systems with less than 4K GE the overhead accounts for 16%-
19% of the datapath area, but it falls down to less than 10%
when the datapath is 10K GE or more. This is also observed
when the overhead is considered a function of N .

Analysis of the squared 2-norm of the residual reveals
that the ω(FDP) estimation performs significantly better than
ω(N). Thus, while the former yields a squared residual of
1.38E+05, which roughly translates into an average error of
371 GE per design, the latter is greater by more than an order
of magnitude (3.36E+06), meaning an error of around 1833
GE per estimation. This is also reasonable, as it appears to be
more sensible that the amount of control logic depends more
on the datapath area rather than on the length of registers.

Overall, using functional overheads such as these provide
us with a more precise estimation of the total footprint area.
For comparison with the plots discussed in previous section,
Figs. 9 and 10 show the adjusted estimates for the training and
test functions, respectively. Similarly, Fig. 11 shows the error
distribution over test functions only. It is clear that the fit is
now much more accurate (compare with Fig. 8), even though
the new estimation cannot be regarded anymore as an upper
bound for the total footprint area.

VI. CONCLUSIONS

In this paper, we have proposed a simple yet accurate proce-
dure to estimate the footprint area of generic lightweight algo-
rithms. We have argued that finding an accurate approximation
is extremely hard, since it strongly depends on factors such
as the architecture chosen by the designer, the manufacturing
technology, the libraries used, the possibility of optimizing the
footprint when combining several parts, etc. Despite this, the
designer of algorithms for constrained environments (such as,

0 2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

Training Function Index

G
a
te

 E
q
u

iv
a
le

n
ts

 (
G

E
)

Estimated − Overheads ω(N)

Real
Estimated − Overheads ω(A

DP
)

Fig. 9. Real and estimated footprint area using adjusted control overheads:
results on 80 training designs.

1 2 3 4 5 6 7 8 9 10
2000

4000

6000

8000

10000

12000

14000

16000

Test Function Index

G
a
te

 E
q
u
iv

a
le

n
ts

 (
G

E
)

Estimated − Overheads ω(N)

Real
Estimated − Overheads ω(A

DP
)

Fig. 10. Real and estimated footprint area using adjusted control overheads:
results on 40 test designs.

for example, those related to cryptographic functions for RFID
tags or sensor nodes) should count on some quantities to drive
their choices. One major motivation for this work is to fill this
gap by providing algorithm designers with a tool to estimate
the cost, in terms of footprint area, of their constructions.

We believe our proposal will help in making some choices
at the algorithmic level, even for designers without hardware
design skills. Furthermore, it could also be applied to get pre-
liminary comparisons among different proposals (lightweight
primitives and more complex constructions such as security
protocols) or, at least, to decide if they are simply too costly
for certain operational environments.

The work presented in this paper can be extended in a
number of ways. One natural direction for future work is
the inclusion of other commonly used elements in the FDP

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

9

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

3

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

−1500 −1000 −500 0 500 1000 1500 2000 2500
0

1

2

Estimation Error (in GE)

96 bits

128 bits

64 bits

32 bits

Fig. 11. Distribution of gate count estimation errors using ω(FDP) on 40
test designs.

estimator, such as for example S-boxes of non-linear filters.
Similarly, we expect to test the proposed estimator against
well-known lightweight cryptographic primitives and compare
the predictions with reported experimental results. Finally, our
focus in this work has been exclusively on the footprint area
of ASIC implementations. It would be interesting to extend
our estimates to include other prominent parameters, primarily
throughput and power consumption, as these have also sig-
nificant influence in design choices. Consider, for example,
one the most used RFID standards [4], [5], where a tag must
support up to 1500 read attempts per second under ideal
conditions, although this rate can be five or ten times smaller
(500-150 tags/sec) in real world environments [29]. Therefore,
for a tag operating frequency of 100 KHz, the number of
clock cycles consumed per reading is upper-bounded by 670
(in fact, 500 clock cyles is an upper bound commonly assumed
in previous works [37], [38]). In principle, the methodology
discussed in this work can be easily extended to incorporate
measures of throughput and power consumption. We expect
to tackle this in future work.

REFERENCES

[1] S. Park and Hongchul Lee. “Self-Recognition of Vehicle Position Using
UHF Passive RFID Tags,” IEEE Trans. on Industrial Electronics, vol.
60, no. 1, pp. 226-234, 2013.

[2] D. Maimut and K. Ouafi. “Lightweight Cryptography for RFID Tags,”
IEE Security & Privacy, vol. 10, no. 2, pp. 76-79, 2012.

[3] S. Chia, A. Zalzala, L. Zalzala, A. Karim. “Intelligent Technologies for
Self-Sustaining, RFID-Based, Rural e-Health Systems,” IEEE Technol-
ogy and Society Magazine, vol.32, no. 1, pp. 36-43, 2013.

[4] EPCglobal. “EPC Radio-Frequency Identity Protocols. Class-1
Generation-2 UHF RFID. Protocol for communications at 860 MHz -
960 MHz,” (Version 1.2.0), 2008.

[5] ISO/IEC 18000-6. “Information technology – Radio Frequency Iden-
tification for item management – Part 6: Parameters for air interface
communications at 860 MHz to 960 MHz,” 2013.

[6] B. Wang and M. Ma. “A Server Independent Authentication Scheme for
RFID Systems,” IEEE Trans. on Industrial Informatics, vol. 8, no. 3,
pp. 689-696, 2012.

[7] A. Abu-Mahfouz and G.P. Hancke. “Distance Bounding: A Practical
Security Solution for Real-Time Location Systems,” IEEE Trans. on
Industrial Informatics, vol. 9, no. 1, pp. 16-27, 2013.

[8] T. Plos, M. Hutter, M. Feldhofer, M. Stiglic, and F. Cavaliere. “Security-
Enabled Near-Field Communication Tag With Flexible Architecture
Supporting Asymmetric Cryptography,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, In Press.

[9] B. Fabian, T. Ermakova, and C. Muller. “SHARDIS: A Privacy-
Enhanced Discovery Service for RFID-Based Product Information,”
IEEE Trans. on Industrial Informatics, vol. 8, no. 3, pp. 707-718, 2012.

[10] S. Piramuthu. “RFID mutual authentication protocols,” Decision Support
Systems, vol. 50, no. 2, pp. 387-393, 2011.

[11] P. Yang, W. Wu, M. Moniri, and C. C. Chibelushi. “Efficient Object
Localization Using Sparsely Distributed Passive RFID Tags,” IEEE
Trans. on Industrial Electronics, vol. 60, no. 12, pp. 5914-5924, 2013.

[12] C. C. Tan and Q. L. Bo Sheng. “Secure and Serverless RFID Authenti-
cation and Search Protocols,” IEEE Trans. on Wireless Communications,
vol. 7, no. 4, pp. 1400-1407, 2008.

[13] A. Vena, E. Perret, and S. Tedjini. “Design of compact and auto-
compensated single-layer chipless RFID tag,” IEEE Trans. on Mi-
crowave Theory and Techniques, vol. 60, no.9, pp. 2913-2924, 2012.

[14] J. Li and S. M. R. Hasan. “Design and Performance Analysis of a 866-
MHz Low-Power Optimized CMOS LNA for UHF RFID,” IEEE Trans.
on Industrial Electronics, vol. 60, no. 5, pp. 1840-1849, 2013.

[15] C. Wang, M. Daneshmand, K. Sohraby, and B. Li. “Performance
analysis of RFID Generation-2 protocol,” IEEE Trans. on Wireless
Communications, vol. 8, no. 5, pp. 2592-2601, 2009.

[16] S. G. Baskir and B. Ors. “Implementation of a secure RFID protocol,” in
Signal Processing and Communications Applications Conference (SIU),
pp. 1-4, 2013.

[17] S. Hosseini-Khayat. “A lightweight security protocol for ultra-low power
ASIC implementation for wireless Implantable Medical Devices,” in
5th International Symposium on Medical Information & Communication
Technology (ISMICT), pp. 6-9, 2011.

[18] X. Guo, M. Srivastav, S. Huang, D. Ganta, M. B. Henry, L. Nazhandali,
and P. Schaumont. “ASIC implementations of five SHA-3 finalists,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1006-1011, 2012.

[19] A. Kempitiya, D.-A. Borca-Tasciuc, and M. M. Hella. “Low-Power
ASIC for Microwatt Electrostatic Energy Harvesters,” IEEE Trans. on
Industrial Electronics, vol. 60, no. 12, pp. 5639-5647, 2013.

[20] S.-Y. Lee, L.-H. Wang and Q. Fang. “A Low-Power RFID Integrated
Circuits for Intelligent Healthcare Systems,” IEEE Trans. on Informa-
tion Technology in Biomedicine, vol. 14, no. 6, pp. 1387-1396, 2010.

[21] Y. Zhou and C. L. Law and J. Xia. “Ultra low-power UWB-RFID system
for precise location-aware applications,” in IEEE Wireless Communica-
tions and Networking Conference Workshops (WCNCW), pp. 154-158,
2012.

[22] J. A. Rodriguez-Rodriguez, M. Delgado-Restituto, J. Masuch, A.
Rodriguez-Perez, E. Alarcon, and A. Rodriguez-Vazquez. “An Ultralow-
Power Mixed-Signal Back End for Passive Sensor UHF RFID Transpon-
ders,” IEEE Trans. on Industrial Electronics, vol. 59, no. 2, pp. 1310-
1322, 2012.

[23] R. Ben Atitallah, E. Senn, D. Chillet, M. Lanoe, and D. Blouin.
“An Efficient Framework for Power-Aware Design of Heterogeneous
MPSoC,” IEEE Trans. on Industrial Informatics, vol. 9, no. 1, pp. 487-
501, 2013.

[24] A. Klimov and A. Shamir. “A new class of invertible mappings”. In
Cryptographic Hardware and Embedded Systems (CHES), vol. 2523 of
LNCS, pp. 471-484, 2002.

[25] G. Avoine, X. Carpent, B. Martin. “Privacy-friendly synchronized ultra-
lightweight authentication protocols in the storm”, Journal of Network
and Computer Applications, vol. 35, n. 2, pp. 826-843, 2012.

[26] H.-Y Chien. “SASI: A new ultralightweight RFID authentication pro-
tocol providing strong authentication and strong integrity,” IEEE Trans.
on Dependable and Secure Computing, vol. 4, no. 4, pp. 337-340, 2007.

[27] P. D’Arco and A.P. de Santis. “On Ultralightweight RFID Authentication
Protocols,” IEEE Trans. on Dependable and Secure Computing, vol. 8,
no. 4, pp. 548-563, 2011.

[28] D, Ranasinghe and P. Cole. “An evaluation framework,” Networked
RFID Systems and Lightweight Cryptography, ch. 8, pp. 157-167, 2007.

[29] M. Brown, E. Zeisel, and R. Sabella, “Chapter 2 - RFID tags,” in RFID+
Exam Cram. Que, 2006.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2013.2288576, IEEE Transactions on Industrial Informatics

10 SUBMITTED TO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[30] N. Nedjah and L. de M. Mourelle. “A review of modular multiplication
methods and respective hardware implementation,” Informatica (Slove-
nia), vol. 30, no. 1, pp. 111-129, 2006.

[31] M.-D. Shieh, J.-H. Chen, W.-C. Lin and H.-H. Wu. “A new algorithm
for high-speed modular multiplication design,” IEEE Trans. on Circuits
and Systems, vol. 56, no. 9, pp. 2009-2019, 2009.

[32] M. Huang, K. Gaj, and T. El-Ghazawi. “New Hardware Architectures
for Montgomery Modular Multiplication Algorithm,” IEEE Trans. on
Computers, vol. 60, no. 7, pp. 923-936, 2011.

[33] 90nm Generic Core Cell Library. Data Book. Rev.: 0.3, 2009.
[34] AMI Semiconductor C035U CMOS. Design Rules. Rev.: A., 2006.
[35] Synopsys Design Compiler User Guide. Version D-2010.03-SP2, 2010.
[36] P. Peris-Lopez, J. C. Hernandez-Castro, J. E. Tapiador, and A. Rib-

agorda. “LAMED A PRNG for EPC Class-1 Generation-2 RFID
specification”, Computer Standards & Interfaces, vol. 31, no. 1, pp.
88-97, 2009.

[37] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti. “Analysis
and Improvement of a Pseudorandom Number Generator for EPC Gen2
Tags,” in Financial Cryptography and Data Security, LNCS series, vol.
6054, pp. 34-46, 2010.

[38] K. Mandal, X. Fan, and G. Gong. “A lightweight pseudorandom number
generator for EPC C1 Gen2 tags,” in Radio Frequency Identification
System Security, ser. Cryptology and Information Security, vol. 8, pp.
7384, 2012.

Honorio Martin is a Ph.D student at the Electronics Technology Department,
Universidad Carlos III de Madrid, Spain. He holds a Research Master’s
Degree in Advanced Electronics Systems. His current research interests
include the study of lightweight cryptography hardware implementations,
Radio Frequency Identification (RFID) systems and low-power designs.

Pedro Peris-Lopez is Visiting Lecturer at the Department of Computer
Science, Universidad Carlos III de Madrid, Spain. He holds a M.Sc. in
Telecommunications Engineering and Ph.D. in Computer Science. His re-
search interests are in the field of protocols design, primitives design,
lightweight cryptography, cryptanalysis etc. Nowadays, his research is focused
on Radio Frequency Identification Systems (RFID) and Implantable Medical
Devices (IMD). In these fields, he has published a great number of papers in
specialized journals and conference proceedings. For additional information
see: www.lightweightcryptography.com/.

Juan E. Tapiador is Associate Professor at the Department of Computer
Science, Universidad Carlos III de Madrid, Spain. He holds an M.Sc. (2000)
and a Ph.D. (2004) in Computer Science from the University of Granada.
Before joining UC3M, between 2009 and 2011 he was Research Associate
at the University of York, UK. His main research interests are in applied
cryptography and computer and network security. For additional information
see: www.seg.inf.uc3m.es/∼jet.

Enrique San Millan is Associate Professor in the Electronics Technology
Department, Universidad Carlos III de Madrid, Spain. He holds an M.Sc. in
Mathematics from La Rioja University (Spain) and a Ph.D in Mathematics
Engineering from Universidad Carlos III de Madrid (Spain). His main research
interests include hardware design of digital circuits and systems for several
fields (cryptography, biometry, fault tolerant systems, communications) and
CAD tools for design automation and optimization of digital integrated
circuits.

