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Abstract

Many security problems in smartphones and other smart devices are ap-
proached from an anomaly detection perspective in which the main goal
reduces to identifying anomalous activity patterns. Since machine learning
algorithms are generally used to build such detectors, one major challenge is
adapting these techniques to battery-powered devices. Many recent works
simply assume that on-platform detection is prohibitive and suggest using
offloaded (i.e., cloud-based) engines. Such a strategy seeks to save battery
life by exchanging computation and communication costs, but it still remains
unclear whether this is optimal or not in all circumstances. In this paper,
we evaluate different strategies for offloading certain functional tasks in ma-
chine learning based detection systems. Our experimental results confirm
the intuition that outsourced computation is clearly the best option in terms
of power consumption, outweighing on-platform strategies in, essentially, all
practical scenarios. Our findings also point out noticeable differences among
different machine learning algorithms, and we provide separate consumption
models for functional blocks (data preprocessing, training, test, and com-
munications) that can be used to obtain power consumption estimates and
compare detectors.
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1. Introduction

The past few years have witnessed a rapid proliferation of portable
“smart” devices with increasingly powerful computing, networking and sens-
ing capabilities. One of the most successful examples of such devices so far
are smartphones and tablets, but new appliances are appearing at a steady
pace, including watches, glasses, and other wearable systems. One key dif-
ference between such smart devices and traditional, non-smart platforms is
that they offer the possibility to easily incorporate third-party applications
(“apps” for short) through online markets. The popularity of smartphones
has been recurrently corroborated by commercial surveys, showing that they
will very soon outsell the number of PCs worldwide [8] and that users are
already spending nearly as much time on smartphone applications as on the
Web (73% vs. 81%) [26].

In many respects, devices such as smartphones present greater security
and privacy risks to users than traditional computing platforms. One key
reason is the presence in the device of numerous sensors that could leak
highly sensitive information about the user’s behavioral patterns (e.g., loca-
tion, gestures, moves and other physical activities) [21], as well as recording
audio, pictures and video from their surroundings. As a consequence, the
development of smartphone technologies and its widespread user acceptance
have come hand in hand with a similar increase in the number and sophis-
tication of threats tailored to these platforms. For example, recent surveys
have warned about the alarming volume of smartphone malware distributed
through alternative markets [35] and the spread of new forms of fraud, iden-
tity theft, sabotage, and other security threats.

1.1. Anomaly Detection in Smart Devices

Many security issues can be essentially reduced to the problem of sep-
arating malicious from non-malicious activities. Such a reformulation has
turned out to be valuable for many classic computer security problems, in-
cluding detecting network intrusions, filtering out spam messages, or iden-
tifying fraudulent transactions. But, in general, defining in a precise and
computationally useful way what is harmless or what is offensive is often too
complex. To overcome these difficulties, many solutions to such problems
have traditionally adopted a machine learning approach, notably through
the use of classifiers to automatically derive models of good and/or bad
behavior that could be later used to identify the occurrence of malicious
activities.
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Anomaly-based detection strategies have proven particularly suitable for
scenarios where the main goal is to separate “self” (i.e., normal, presumably
harmless behavior) from “non-self” (i.e., anomalous and, therefore, poten-
tially hostile activities). In this setting, one often uses a dataset of self
instances to obtain a model of normal behavior. In detection mode, each
sample that does not fit the model is labelled as anomalous. This notion has
been thoroughly explored over the last two decades and applied to multiple
domains in the security arena [4, 12, 15].

More recently, many security problems related to smartphone platforms
have been approached with anomaly-based schemes (see, e.g., [33, 13, 32, 10,
3]). One illustrative example is found in the field of continuous –or implicit–
authentication through behavioral biometrics [19, 34, 7]. The key idea here
is to equip the device with the capability of continuously authenticate the
user by monitoring a number of behavioral features, such as for example
the gait –measured through the built-in accelerometer and gyroscope–, the
keystroke dynamics, the usage patterns of apps, etc. These schemes rely on
a model learned from user behaviors to identify anomalies that, for example,
could mean that the device is mislaid, in which case it should lock itself and
request a password.

Proposals for detecting malware in smartphones have also made exten-
sive use of anomaly detection approaches. Most schemes are built upon
the hypothesis that malicious apps somehow behave differently from good-
ware. The common practice consists of monitoring a number of features for
non-malicious apps, such as for example the amount of CPU used, network
traffic generated, system/API calls made, permissions requested, etc. These
traces are then used to train models of normality that, again, can be used to
spot suspicious behavior. Modelling app behavior in this way is particularly
useful in two scenarios. The first one is related to the problem of repackaged
apps, which constitutes one of the most common distribution strategies for
smartphone malware. In this case, the malicious payload is piggybacked
into a popular app and distributed through alternative markets. Detecting
repackaged apps is a challenging problem, in particular when the payload
is obfuscated or dynamically retrieved at runtime. The second problem is
thwarting the so-called grayware, i.e., apps that are not fully malicious but
that entail security and/or privacy risks of which the user may not be fully
aware. For instance, an increasingly number of apps access user-sensitive
information such as locations frequently visited, contacts, etc. and send it
out of the phone for obscure purposes [21]. As users find it difficult to define
their privacy preferences in a precise way, automatic methods to tell apart
good from bad activities constitute a promising approach.
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1.2. Motivation

Essentially all machine learning-based anomaly detection solutions can
be broken down into the following functional blocks:

• Data acquisition. Activity traces are required both for (re-)training
the model of normality and in detection mode. The nature of the
data collected varies across applications and may include events such
as system calls, network activities, user-generated inputs, etc.

• Feature extraction. Machine learning algorithms require data to be ex-
pressed in particular formats, commonly in the form of feature vectors.
A number of features are extracted from the acquired activity traces
during a preprocessing stage. The complexity of such preprocessing
depends on the problem and ranges from computationally straightfor-
ward procedures (e.g., obtaining simple statistics from the data) to
more resource intensive transformations.

• Training. A representative set of feature vectors is used to train a
model that captures the underlying notion of normality. This process
may be done offline, in which case periodic re-trainings are often nec-
essary in order to adapt the model to drifts in behavioral patterns, or
else constantly as new data arrives.

• Detection. Once a behavioral model is available, it is used along with
a similarity function to obtain an anomaly score for each observed fea-
ture vector. This process is often carried out in real time and requires
constant data acquisition and feature extraction.

All the functions described above can be quite demanding –particularly
if they must operate constantly– and it is debatable whether they can be
afforded in energy-constrained devices with limited computational capabil-
ities. As a consequence, a number of recent works (see, e.g., [29, 42]) have
suggested externalizing some of these tasks to dedicated servers in the cloud
or to other mobile devices nearby [39]. Although off-loading computation
seems intuitively advantageous, such a strategy has an implicit trade-off
between the energy savings resulting from not performing on-platform com-
putations and the costs involved in data exchanges over the network. In-
termediate strategies are also possible, such as for example off-loading the
training stage only and performing detection locally, or externalizing every-
thing but the data acquisition and preprocessing stages. Additionally, each
plausible placement strategy has consequences in aspects other than power
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consumption. For example, off-loaded detection may result in delays in de-
tecting anomalous events, or even malfunctions if network connectivity is
unavailable.

Intuition suggests that intensive monitoring is prohibitive for platforms
such as the current generation of smartphones [31]. However, the power con-
sumption trade-offs among the various on-platform and externalized com-
putation strategies are unclear, and to the best of our knowledge no analysis
on this has been carried out yet.

1.3. Overview and Organization

In this paper, we address the problem discussed above and assess the
power-consumption trade-offs among different strategies for off-loading, or
not, functional tasks in machine learning based anomaly detection systems.
Our analysis is motivated by, and hence strongly biased towards, security
applications of anomaly detectors, such as for example malware detection or
behavioral authentication. Nevertheless, the majority of our experimental
setting, results and conclusions are general and may be of interest to other
domains where smartphone-based anomaly detectors are used (e.g., health
monitoring applications [21]).

In summary, our results confirm the intuition that externalized compu-
tation is, by far, the best option energy-wise. However, one rather surprising
finding is that it is several orders of magnitude cheaper than on-platform
computations, which suggests that networking is much more optimized than
computation in such platforms. Furthermore, we have noticed substantial
differences among the machine learning algorithms tested. Since some of
them appear not to scale well for large feature vectors and/or datasets,
developers should make careful choices when opting for one algorithm or
another. In addition, anomaly detectors are found to consume considerably
more power than popular apps such as games or online social networks,
which motivates the need for more lightweight machine learning algorithms.

The rest of the paper is organized as follows. Section 2 describes the
experimental setting used in our work, including the platform used, the
anomaly detectors tested and the experiments carried out. Empirical re-
sults are discussed in Section 3, and power-consumption linear models are
numerically derived for each separate function. Such models are used in Sec-
tion 4 to analyze various off-loading strategies and provide a comparative
discussion. In Section 5 we illustrate the main findings discussed through-
out the paper using an anomaly-based detector of repackaged malware. An
overview of related work is given in Section 6, and Section 7 concludes the
paper by summarizing our contributions and main conclusions.
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2. Experimental Setting

In this section, we describe the experimental framework used for evaluat-
ing power consumption in Android devices, including the machine learning
algorithms evaluated, the tests carried out, and the tools and operational
procedures used to measure power consumption.

2.1. Machine Learning Algorithms

We have tested three machine learning algorithms that can be used as
anomaly detectors. Our choosing of these particular schemes is motivated by
the different computational approaches followed by each one of them, and
also because they are representative of broad classes of machine learning
strategies: decision trees [30], clustering [14], and probabilistic approaches
[18]. For completeness, we next provide an overview of each algorithm’s
working principles.

• J48 is a Java implementation of the classic C4.5 algorithm [18]. The
procedure builds a decision tree from a labelled training dataset using
information gain (entropy) as a criterion to choose attributes. The
algorithm starts with an empty tree and progressively grows nodes
by choosing those attributes that most effectively split the dataset
into subsets where one class dominates. This procedure is recursively
repeated until reaching nodes where all instances belong to the same
class [18].

The resulting tree can be used as a classifier that outputs the class
of future observations based on their attributes. The binary setting
(i.e., two classes: normal and anomalous) is commonly used in anomaly
detection problems, although it is perfectly possible to train a classifier
with more a complex class structure.

• K-means is a clustering algorithm that groups data into k clusters and
returns the geometric centroid of each one of them. Given a dataset
composed of feature vectors D = {x1, . . . ,xn}, the algorithm searchs
for a partition of D into k clusters {C1, . . . , Ck} such that the within-
cluster sum of squares

k∑
i=1

∑
xj∈Ci

‖ xj − µi ‖2 (1)

is minimized, where µi is the geometric mean of the vectors in Ci.

6



When used in a supervised training setting, each centroid µi receives
a class label derived from the labels of the samples associated with
the corresponding cluster. Labelled centroids can be then used, to-
gether with a nearest neighbor classifier, to determine the class of an
observation by simply assigning it to a cluster according to some dis-
tance. Clustering algorithms have been extensively used in anomaly
detection, particularly in one-class settings where only normal train-
ing instances are available. In such cases, a sample is often labelled as
anomalous if its sufficiently far away from its nearest centroid.

• OCNB (One Class Näıve Bayes) [18] is a supervised learning algorithm
that has been successfully used in a wide range of applications. OCNB
is often a very attractive solution because of its simplicity, efficiency
and excellent performance. It uses the Bayes rule to estimate the
probability that an instance x = (x1, . . . , xm) belongs to class y as

P (y|x) =
P (y)

P (x)
P (x|y) =

P (y)

P (x)

m∏
i=1

P (xi|y) (2)

so the class with highest P (y|x) is predicted. (Note that P (x) is in-
dependent of the class and therefore can be omitted.) The näıvety
comes from the assumption that in the underlying probabilistic model
all the features are independent, and hence P (x|y) =

∏m
i=1 P (xi|y).

The probabilities P (xi|y) are derived from a training set consisting
of labelled instances for all possible classes. This is done by a simple
counting procedure, often using some smoothing scheme to ensure that
all terms appear with non-zero probability. The priors P (y) are often
ignored.

In a one-class (OC) setting the training set consists exclusively of nor-
mal data. Since a profile of non-self behavior is not required, the
detection is performed by simply comparing the probability of a sam-
ple being normal (or, equivalently, the anomaly score) to a threshold.
Such a threshold can be adjusted to control the false and true posi-
tive rates, and the resulting ROC (Receiver Operating Characteristic)
curve provides a way of measuring the detection quality.

2.2. Instrumentation

The experiments have been conducted in a Google Nexus One smart-
phone. Power consumption has been measured by applying a battery of tests
involving both computation and communication capabilities. Each test is
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an app containing some of the functionality present in a given anomaly de-
tector, such as for example the training process or the detection stage. The
app is loaded into the device and repeatedly executed using some provided
configuration. The process is sequential, so only one execution is run at a
time.

The device was previously instrumented with AppScope [38], an energy
metering framework based on monitoring kernel activity for Android. App-
Scope collects usage information from the monitored device and estimates
the consumption of each running application using an energy model given
by DevScope [20]. AppScope provides the amount of energy consumed by
an app in the form of several time series, each one associated with a compo-
nent of the device (CPU, Wi-Fi, cellular, touchscreen, etc.). We restrict our
measures to CPU for computations and Wi-Fi for communications, as our
tests do not have a graphical user interface, do not require user interaction
and, therefore, do not use any other component.

2.3. Power Consumption Tests

The power consumption tests were independently carried out over the
four functional tasks described in Section 1.2 in order to obtain a separate
consumption model for each anomaly detection component. With this aim
in mind, we designed the following four families of tests:

1. Data preprocessing. The underlying machine learning algorithm takes
as input a dataset of behavioral patterns encoded in some specific for-
mat, often in the form of feature vectors. Obtaining such patterns may
involve non-negligible computations, such as for example computing
histograms, obtaining statistics, applying data transformations, etc.
In our case, this stage consisted of processing a trace file where an or-
dered list of system calls executed by a monitored app was provided.
The trace is sequentially read using a sliding window and a feature
vector is computed for each window. The vector is then written into
an Attribute-Relation File Format (ARFF) file, which will be later
used for training or detection purposes. Overall, the preprocessing
requires some on-platform computations and also reading and writ-
ing files. We used generic I/O Java components for this task, such as
FileInputStream and BufferedReader.

2. Training. The training process reads an ARFF dataset and builds a
model of normal behavior according to some machine learning algo-
rithm. We prepared three different subtests, one for each algorithm
discussed above. We used an stripped version of the well known Weka
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[16] library for Android devices, as this implementation is reasonably
optimized. Training involves a number of parameters that may influ-
ence the algorithm’s running time. In our case, each algorithm was
provided with the configuration yielding optimal detection results as
discussed in the previous section.

3. Detection. This tests measures the amount of power consumed by
a constantly running detector. Again, we prepared one subtest for
each machine learning algorithm and implemented the detector using
the stripped version of Weka. Each detector is assumed to have the
behavioral model already loaded, so the test only measures power con-
sumption associated with loading a test vector and deciding its class
(normal or anomalous).

4. Communications. In this test we measured the amount of power con-
sumed by sending and receiving data over a Wi-Fi connection. As the
amount of data exchanged and the frequency of such exchanges may
vary across operational scenarios, we focused on obtaining a model
of power consumed per exchanged byte. We identified three subtests
here, depending on whether a secure (encrypted and authenticated)
channel is necessary or not. The tests were implemented using stan-
dard Java libraries, such as HttpURLConnect and HttpsURLConnect for
insecure and secure communications, respectively. Besides, we tested
two different networking scenarios. In the first one, the detector com-
municates with a locally reachable device, which implies low network
latency. For these cases we tested both open and WPA-protected Wi-
Fi networks. In this case, the time required for a packet to travel from
the device to the server and back (Round-Trip Time, RTT) is about
0.6 ms. In the second scenario, we assumed that the detector commu-
nicates with a device located reasonably far away in terms of network
latency, such as for example in a cloud service accessible via Internet.
In our experimental setting, the server is accessed via Internet using
a WPA-protected Wi-Fi network with a network latency of around 31
ms.

As indicated above, each test is a separate app that is installed on the de-
vice, executed, measured with AppScope, and finally uninstalled. Each test
was executed 30 times with different input parameters, such as the length
and number of feature vectors in the training dataset and the frequency of
sending and receiving data over the network. We elaborate on this later
when discussing the experimental results.

The test suite is summarized in Table 1.
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Test Subtest No. Executions

Data preprocessing Preprocessing 30

Training
Training.J48 30
Training.K-means 30
Training.OCNB 30

Detection
Detection.J48 30
Detection.K-means 30
Detection.OCNB 30

Comms

Comms.LoLat.Open.HTTP 30
Comms.LoLat.Open.HTTPS 30
Comms.LoLat.WPA.HTTP 30
Comms.LoLat.WPA.HTTPS 30
Comms.HiLat.WPA.HTTP 30
Comms.HiLat.WPA.HTTPS 30

Table 1: Power consumption tests executed.

3. Power Consumption of Anomaly Detection Components

We next present the experimental results obtained after running the tests
described in the preceding section. We group the results into two separate
categories: computation and communications. The first one includes data
preprocessing, training, and detection, while the second focuses on data
exchange over the network. We finally obtain and discuss linear regression
models for each algorithm and functional task.

3.1. Computation

We experimentally found that power consumption related to preprocess-
ing, training, and detection tasks depends on:

• The length |v| of the feature vectors, measured as the number of at-
tributes that each vector has.

• The size |D| of the dataset, measured as the number of vectors to be
processed, i.e., generated during preprocessing, used for training, or
evaluated during detection.

We executed all the preprocessing, training and detection tests with
values of |v| = 10, 100, 200, 300, and 400. These lengths are representative
of the feature vectors used in most security applications of machine learning.
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Figure 1: Power consumption results in Joules per vector for different vector lengths for
the preprocessing, training and detection tests.

On the other hand, for each vector length we generated datasets of sizes
|D| = 10, 50, 100, 200, 500, and 1000, and then computed the average power
consumption per vector. The average power consumption in Joules (J) per
vector for each vector length is shown in Figure 1. Several conclusions can
be drawn from these results:

1. Data preprocessing consumes very little power when compared to de-
tection and training. This cannot be easily generalized, as it strongly
depends on the sort of preprocessing applied. In our case data prepro-
cessing is quite straightforward (computing histograms) and consumes
less than 10 J/vector.

2. For a given algorithm, detection is significantly cheaper than training
in terms of power consumption, but there are exceptions. For example,
for both J48 and OCNB and vectors of length 100 training requires
around 50 J/vector more than detection. This difference increases to
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the communication test.

more than 100 J/vector for lengths greater than 300. K-means is an
exception, with training and detection consuming approximately the
same power.

3. The algorithm matters: K-means consumes far less than J48 and
OCNB. In turn, OCNB is more expensive power-wise than J48, both
in training and detection.

4. For the three tasks, power consumption increases approximately lin-
early in |v|.

3.2. Communications

Each communication test consists of the app sending and receiving 10
large files to/from a server, using both HTTP and HTTPS. After each test,
the total power consumed is divided by the number of bytes sent or received
to obtain a normalized measure in Joules per byte. Each test was repeated
30 times, resulting in the boxplots shown in Figure 2.

The results are quite surprising. On the one hand, we found no significant
difference between using HTTP or HTTPS. In other words, key establish-
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ment plus encryption/decryption for each packet sent/received seems to be
extremely efficient in terms of power consumption. One possible explana-
tion for these figures might be related to the granularity used by AppScope
to measure energy and compute the attribution of consumption. AppScope
uses application-specific energy consumption data for each hardware compo-
nent. However, authors argue that the “system” consumes a certain amount
of power when communications are used. It may be the case that AppScope
is not attributing the consumption of crypto operations to the app using
HTTPS.

Apart from the observation above, our results suggest that network la-
tency has a clear influence power consumption. In our experiments, increas-
ing latency from 0.6 ms to 31 ms resulted in 8 times more power consump-
tion. This may just be a consequence of the app execution taking more time
to transmit the data.

3.3. Linear Models

We used the figures obtained above to derive linear power consumption
models that could be later used to determine the best deployment strategy
for each function depending on aspects such as the remaining power available
on the device or the detection architecture. To do this, we applied a simple
linear regression analysis using least squares over the power consumption
data.

In the case of the computation functions, each model has the form:

Pf (|v|) = αf · |v|+ βf (3)

where f ∈ {pre, tra, det}, i.e., preprocessing, training, and detection, re-
spectively. Similarly, power consumption incurred by communications is
estimated by a linear model:

Pcomms(s) = γ · s (4)

where s is the number of bytes to be sent or received, and γ is the average
power consumption of the network configuration used by the device.

The coefficients thus estimated are provided in Table 2 and confirm the
conclusions drawn above. For example the slope α of the three training algo-
rithms reveals the difference between K-means, which introduces a multiply-
ing factor of 0.11 J per additional attribute in the vector, and J48/OCNB,
for which such a factor is 0.45 J and 0.57 J, respectively. Similarly, OCNB
is clearly much more costly in terms of detection, with a 0.15 J factor per
additional vector attribute against 0.05 and 0.08 for J48 and K-means, re-
spectively.
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Function Model

Computation αf βf

Preprocessing – 0.00 2.82

Training
Training.J48 0.45 24.45
Training.K-means 0.11 7.85
Training.OCNB 0.57 18.78

Detection
Detection.J48 0.05 9.04
Detection.K-means 0.08 7.16
Detection.OCNB 0.15 6.34

Communications γ

Comms

Comms.LoLat.Open.HTTP 8.74 · 10−7

Comms.LoLat.Open.HTTPS 5.09 · 10−7

Comms.LoLat.WPA.HTTP 5.81 · 10−7

Comms.LoLat.WPA.HTTPS 5.18 · 10−7

Comms.HiLat.WPA.HTTP 8.31 · 10−6

Comms.HiLat.WPA.HTTPS 8.34 · 10−6

Table 2: Regression coefficients for the linear power consumption models for computation
and communication tasks.

4. Deployment Strategies and Trade-offs

Based on the findings presented in the previous section, we next dis-
cuss different deployment strategies for the various functions composing an
anomaly detection system and analyze the associated power consumption
costs.

4.1. Energy Consumption Strategies

We make two assumptions in our subsequent analysis. Firstly, data
acquisition is executed in the device by means of some instrumentation pro-
cedure, e.g., through the system API to get access to activity traces. This
would not be strictly true for some recently proposed approaches based on
keeping a synchronized clone of the device in the cloud [29, 5, 42]. We
believe, however, that the overhead incurred by such approaches may be
equivalent to that of directly monitoring the device, although this issue
needs further investigation. Secondly, our envisioned applications require
relatively straightforward data preprocessing (see Table 2) that can easily
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be incorporated into the data acquisition module. As a result, both acquir-
ing the data and preparing the feature vectors incur a constant overhead for
all discussed strategies and will be left out of our analysis.

The two remaining functional blocks are training and detection. Each
one, or both, of them can be placed locally in the device (L) or off-loaded
to a remote server (R). This gives rise to four possible strategies that will
denoted by LL, LR, RL, and RR. In all cases, power consumption is a linear
function:

Pi,j(t) = πi,j · t (5)

with i, j ∈ {L,R}, where πi,j is determined by each strategy.
In what follows |v| represents the length in bytes of each feature vector;

|D| is the size of the dataset used for training, measured in number of
vectors; |M | is the size in bytes of the normality model returned by the
training process; and ωt and ωd represent the frequencies at which training
and detection take place, respectively.

• Local Training, Local Detection (LL). In this case the entire operation
of the detector is executed locally in the device. The power consump-
tion factor πLL is composed of two terms: Pt(|v|) Joules per vector
in the dataset during training, plus Pd(|v|) Joules per vector for each
detection event. Overall, we have:

πLL = ωt|D|Pt(|v|) + ωdPd(|v|) (6)

• Local Training, Remote Detection (LR). In this scenario training takes
place in the device but detection is off-loaded. During training, power
consumption is equivalent to the corresponding term in (6) plus the
cost of sending the model M to the cloud (Pd(|M |)). In detection
mode, every vector must be also sent out for analysis. We consider
here that receiving the result has a negligible cost, as it may just be 1
bit (normal/anomalous). In summary:

πLR = ωt

(
|D|Pt(|v|) + Pc(|M |)

)
+ ωdPc(|v|) (7)

• Remote Training, Local Detection (RL). This strategy captures the
idea of off-loading the model training stage while performing detection
locally. To do this, every time that a (re-)training event is triggered
the entire dataset must be sent out for analysis and, subsequently, the
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model must be received. In detection mode, power consumption for
each analyzed vector is ascribed to the device, resulting in:

πRL = ωt

(
|D|Pc(|v|) + Pc(|M |)

)
+ ωdPd(|v|) (8)

• Remote Training, Remote Detection (RR). Finally, this strategy con-
siders the possibility of externalizing all functions to a remote server.
Consequently, the only power consumption attributed to the device is
that related to sending and receiving feature vectors both for training
and detection. Thus:

πRR = ωt|D|Pc(|v|) + ωdPc(|v|) (9)

We then discuss the tradeoffs between these four possibilities. In partic-
ular, we compare the LL strategy with the other three to understand the
potential gains from off-loading training, detection, or both.

4.2. LL vs LR

The LL strategy is preferred to LR if:

πLL ≤ πLR

ωt|D|Pt(|v|) + ωdPd(|v|) ≤ ωt

(
|D|Pt(|v|) + Pc(|M |)

)
+ ωdPc(|v|)

ωdPd(|v|) ≤ ωtPc(|M |) + ωdPc(|v|)
ωdPd(|v|) ≤ (ωt + ωd)Pc(|M |+ |v|)

Pd(|v|) ≤ ωt + ωd

ωd
Pc(|M |+ |v|) (10)

Note that, in general, ωd � ωt, in which case the term ωt+ωd
ωd
≈ 1. Alterna-

tively, in the extreme case of training being done for each incoming vector,
we have ωd = ωt and ωt+ωd

ωd
= 2. Renaming this term as

k =
ωt + ωd

ωd
∈ [1, 2] (11)

and using the linear forms of Pd and Pc we can rewrite the inequatlity above
as:

α|v|+ β ≤ kγ(|v|+ |M |)
(α− kγ)|v| ≤ γ|M | − β

|v| ≤ k
γ|M | − β
α− kγ

(12)
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A simple analysis of the orders of magnitude of the quantities involved in
(12) provides some insights. Recall that α ≈ 10−2, β ≈ 10 and γ ≈ 10−7

(see Table 2). Replacing these values in (12), and ignoring the factor k, we
get

|v| ≤ 10−7|M | − 10

10−2 − 10−7
≈ 10−5|M | (13)

Consequently, the right-hand term in (12) will be negative unless |M | is of
the order of 106 or greater. However, almost all machine learning algorithms
produce models that rarely exceed a few hundred kilobytes.

The main conclusion that can be drawn is that the LL strategy is worse
energy-wise than the LR unless the model is so large and the vectors tiny
enough so that the power consumed by sending both the model and the
vectors to the cloud outweighs the power of performing detection locally.

4.3. LL vs RL

In this case we have:

πLL ≤ πRL

ωt|D|Pt(|v|) + ωdPd(|v|) ≤ ωt

(
|D|Pc(|v|) + Pc(|M |)

)
+ ωdPd(|v|)

ωt|D|Pt(|v|) ≤ ωt

(
|D|Pc(|v|) + Pc(|M |)

)
|D|Pt(|v|) ≤ |D|Pc(|v|) + Pc(|M |)
|D|Pt(|v|) ≤ Pc(|D||v|+ |M |)

|D|(α|v|+ β) ≤ γ(|D||v|+ |M |)
|D|α|v|+ |D|β ≤ |D|γ|v|+ γ|M |
|D|(α− γ)|v| ≤ γ|M | − |D|β

|v| ≤ γ|M | − |D|β
|D|(α− γ)

(14)

Expression (14) presents a trade-off somewhat similar to that discussed in
the previous section, but more acute. The fact that training takes place
remotely factors in the size of the dataset in the inequality, which must
be transferred for the remote server to build up the model. The overall
consequence is however similar: the RL strategy consumes less than LL
unless the model is sufficiently large with respect to the size of the dataset.
Since the factor −|D|β appears in the numerator of (14), the model size
must now be even greater than in the previous case.
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In summary, outsourcing the training stage is consistently better than
performing it locally unless the datasets to be sent for analysis and the
models received are massive.

4.4. LL vs RR

Local training and detection consumes less than a fully off-loaded oper-
ation if:

πLL ≤ πRR

ωt|D|Pt(|v|) + ωdPd(|v|) ≤ ωt|D|Pc(|v|) + ωdPc(|v|)

ωt|D|
(
Pt(|v|)− Pc(|v|)

)
≤ ωd

(
Pc(|v|)− Pd(|v|)

)
(15)

Note that in (15) the various power consumption functions are applied to
inputs of the same length |v|. However, communications are several orders
of magnitude cheaper than training and detection, so

Pt(|v|)− Pc(|v|) ≈ Pt(|v|) (16)

and
Pc(|v|)− Pd(|v|) ≈ −Pd(|v|) (17)

Replacing this in (15) we get

ωt|D|Pt(|v|) ≤ −ωdPd(|v|) (18)

which never holds. The conclusion is clear and, in a sense, rather expected
from the findings discussed in the two previous sections: off-loading the en-
tire operation of the detector is always better in terms of power consumption
than operating locally in the device.

Taking another look at (15), the only scenario where LL may be com-
petitive against RR arises when Pc(|v|) ≥ Pd(|v|). This situation may corre-
spond to extremely lightweight detectors in which computing the anomaly
score takes less power than sending the vector over the network. In such a
case, (15) can be reduced to:

|D| Pt(|v|)
Pc(|v|)− Pd(|v|)

≤ ωd

ωt
(19)

which essentially establishes that local operation pays off power-wise if train-
ing is very infrequent, does not consume much energy, and the datasets are
not very large.
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4.5. Discussion

The analysis conducted in the previous three sections point out to one
definite conclusion: externalizing computation, both training and detection
activities, is by far the best option in terms of power consumption. A deeper
look at the trade-offs derived above reveals that the core of this argument is
intimately related to the enormous differences in power consumption exist-
ing between computation and networking activities. In platforms such as the
current generation of smartphones, communications appear to be extraor-
dinarily optimized in terms of energy requirements, whereas computation is
significantly more demanding. In the case of applications such as anomaly
detection, the best strategy is undoubtedly to externalize all computation
functions, including continuous detection, whenever possible.

In terms of performance criteria other than power consumption, off-
loading may or may not have an impact depending on the application do-
main. Loss of network connectivity –or even sufficient degradation– is a
major threat for outsourced detection, as the device may be forced to func-
tioning without the detection service while the remote server is unreachable.
Similarly, network delays may be a critical point in applications where near
real-time detection is required. In such cases, these aspects must be weighed
against the energy saving benefit.

Finally, the security and privacy aspects of offloading computation to
the cloud is a major concern that may prevent many users from relying
on external services, particularly when confidential data is involved in the
training and detection datasets. In this context, many works have dealt
with the problem of securely outsourcing computation (see, e.g. [37]). One
common assumption is to consider the external server as untrusted and to
encrypt all data sent out for processing. In order to assess the extra power
consumption incurred by encrypting data prior to sending it, we evaluated
three of the most common ciphers found in cryptographic libraries and used
nowadays: AES, 3DES, and RC4. The experimental setting and power
consumption tests are identical to those described in Section 2.3. We carried
out 30 independent tests and divided, in each case, the total power consumed
by the number of encrypted bytes to obtain a normalized measure in Joules
per byte. The γ factor obtained is shown in Table 3. As it can be observed,
the cost of encryption is negligible when compared to that of training and
detection tasks and does not affect the general conclusions discussed above.
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Cipher Mode γ

AES-128 CTR 7.62 · 10−9

3DES CTR 9.52 · 10−9

RC4 – 7.62 · 10−9

Table 3: Average power consumption per encrypted byte.

5. Case Study: A Detector of Repackaged Malware

We next illustrate some of the conclusions drawn in the preceding sec-
tions with real-world application: an anomaly-based detector for repackaged
malware in Android apps. The use of anomaly detectors for this purpose has
been proposed in a number of recent works (see, e.g., [3, 33]). Although in
all cases the performance of such approaches is reasonably good in terms of
detection quality, to the best of our knowledge none has explored the power
consumption savings gained by outsourcing it.

5.1. The Detector

Sequences of system calls have been recurrently used by anomaly detec-
tion systems for security applications in smartphones [2, 3, 33, 23]. All apps
interact with the platform where they are executed by requesting services
through a number of available system calls. These calls define an interface
that allow apps to read/write files, send/receive data through the network,
read data from a sensor, make a phone call, etc. Legitimate apps can be
characterized by the way they use such an interface [23], which facilitates the
identification of malicious components inserted into an seemingly harmless
app and, more generally, other forms of malware [35].

Based on this idea, we have built an anomaly detector that combines
some of the ideas already proposed in previous works1. Feature vectors
consist of histograms computed from a trace of system calls using a sliding
window of length W . We determined experimentally that windows of length
400 result in very good detection performance. The number of systems
calls varies across architectures and it is often between 200 and 400. Thus,
during the training period all processes of normal apps are monitored and

1We deliberately omit a number of details about our detector, particularly those related
to the detection quality for different parametrizations, as this is not the main focus of this
work and has been reported elsewhere.
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the corresponding feature vectors are generated. Such vectors are then used
to train a normality model.

In detection mode, the algorithm takes as input a sequence s of N system
calls and extracts the N −W + 1 feature vectors using a sliding window.
Each one of these feature vectors is then classified as normal or anomalous.
Let A be the number of vectors identified as anomalous. Then, the sequence
–and, therefore, the app– is classified according to the following rule:

det(s) =

{
legitimate if A

N−W+1 < τ

repackaged otherwise
(20)

where τ is an adjustable detection threshold.
The detection procedure described above is intimately related to the na-

ture of repackaged malware. In general, not all the system call windows
issued by a repackaged app will be anomalous, as they may be generated
by non-malicious code. Thus, detection must be based on analyzing sets
of windows and seeking if a fraction of them are anomalous. In our ex-
periments, we obtained good results with sequences of at least 10 windows
and thresholds τ around 0.1. For example, one of the apps we used for
testing detection performance is a popular game named Mx Moto by Camel
Games. The app can be purchased from Google Play for 1.49 eand so far
has been downloaded 100K times. The same app can also be found in al-
ternative markets for free [41], in most cases repackaged with a malware
known as Anserverbot. We tested the original app together with various
repackaged variants, obtaining in all cases a detection rate of 100% with no
false positives with the OCNB detector. These results are congruent with
those reported in similar works based on anomaly detection [3, 33].

5.2. Testing Framework

We tested the power consumption of three detectors built as described
above, one for each machine learning algorithm evaluated. Only the LL and
RR strategies were studied, as they represent opposite cases for placement
decisions. For the latter, the high latency configuration with WPA and
HTTPS was used. In order to study power consumption for different apps
and/or detector configurations, we gathered a dataset of 190 apps containing
both goodware and malware. For each one of them, we derived the average
number of system calls per second issued depending on different usage in-
tensity rates (throttle). These figures are obtained by running each app in a
controlled environment and automatically injecting user events at a throttle
pace. The results are shown in Table 4 and reveal that apps can generate
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Type No. Apps No. Events Throttle (ms) Syscalls/s

Goodware
10 5000 1000 180.43
35 1000 5000 453.91
50 5000 1000 307.62

Malware
10 5000 1000 112.39
35 1000 5000 128.66
50 5000 1000 161.90

All 190 — Average 224.16

Table 4: Average number of system calls per second in different executions of both good-
ware and malware.

up to a few hundred system calls per second. Even though user-driven apps
may well function at lower paces, these rates are useful for apps where high
frequency testing is required.

Each detector is evaluated for different vector lengths. Again, our goal
is measuring how the amount of power varies in a real setting depending on
the choice of this parameter. (Recall that in terms of detection quality, best
results are obtained for |v| = 100.) Finally, each detector was continuously
executed during 1 week, and the amount of power consumed so far was
measured at 4 control points: after 10 minutes, 1 hour, 1 day, and 1 week.
During this period, detection is triggered as often as a sufficiently large
sequence of system calls is available, and re-training occurs every 10 minutes.

5.3. Results and Discussion

Fig. 3 shows the average power consumed by the three detectors for the
LL and RR strategies. (Note that the latter is independent of the algorithm
as only communications are involved.) The plots are consistent with the re-
sults discussed in the previous section and confirm that outsourced detection
is much more efficient power-wise than on-platform operation. Consider, for
example, the case of vectors of 100 attributes. During the first 10 minutes,
both the OCNB and the J48 detectors have consumed more than 105 J.
During the same period, the detector located in the cloud has required less
than 104 J. After 1 day, cloud-based detectors consume roughly the same
amount of power than on-platform detectors over 1 hour. Note, too, that
the frequency of re-trainings is extremely high in this setting, and that the
difference would be substantially greater if training occur more sporadically.

Another interesting finding is that differences among algorithms are no-
ticeable after some time, especially for large vectors. In general, OCNB
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Figure 3: Average energy consumption for different detectors using the LL (left) and RR
(right) strategies.

is much more demanding than K-means and J48 when vectors with a few
hundred attributes are involved.

Finally, in order to contextualize the energy implications of constantly
running a detector, we have measured the power consumed by some popular
apps during 10 minutes (see Table 5). These apps are representative of three
broad classes of popular activities: games, online social networking, and
multimedia content. The amount of power consumed by the three ranges
between approximately 550 J and 645 J, most of it being related to the
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App CPU Comms Display Total

YouTube 30.11 12.59 508.90 551.59

MX Moto 129.24 5.75 509.54 644.52

Facebook 137.76 27.42 471.42 637.27

Table 5: Consumption (in Joules) of three popular apps during a time span of 10 minutes.

graphical user interface. For comparison purposes, running our detector
in the device with the less demanding algorithm (J48) takes around 15 J
per detection. At full throttle (i.e., around 224 detections per second) this
implies a consumption of around 2 MJ in 10 minutes. Even if detection only
takes place at a rate of 1 per second, the overall consumption in 10 minutes
is still around 9 KJ. In contrast, outsourced detection using WPA, HTTPS,
and high latency consumes around 112 J and 0.5 J in the same conditions,
respectively.

The figures discussed above reinforce the conclusion that externalized
operation of anomaly detection seems to be the only reasonable choice in
terms of power consumption. However, given that cloud-based processing
may raise some privacy concerns in certain applications, this also motivates
the need for more lightweight anomaly detection techniques that may be
suitable for on-platform operation.

6. Related Work

A substantial amount of recent works have approached the problem of
detecting malware in smartphones using a variety of machine learning tech-
niques [35]. As discussed before, these schemes attempt to identify where
and how malware manifests by constantly monitoring various features that
are checked against automatically learned models of good and/or bad be-
havior.

Andromaly [33] is a representative example of such systems. It uses dy-
namic analysis for periodically monitoring a number of features that are
later used by anomaly detectors to classify apps as goodware or malware.
The entire process executes locally in the device. Monitored features include
CPU consumption, number of network packets, number of running processes
and battery level. Feature vectors are classified using a variety of machine
learning algorithms, inlcuding K-means, logistic regression, decision trees,
Bayesian networks and näıve Bayes. Furthermore, the experiments reported
in [33] provide good basis to understand which machine learning algorithms
are superior in terms of detection performance.
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AppProfiler [32] follows a somewhat similar approach, but combining
tainting and static analysis to extract privacy-related behaviors. The scheme
builds a knowledge base that maps app behavior with API calls observed
during static analysis, providing the user with valuable information about
their apps.

Crowdroid [3] is another anomaly-based malware detection system for
Android devices that uses K-means as base classifier. The main difference
with other approaches such as Andromaly or MADAM [10] is that Crowdroid
is fully outsourced and operates from the cloud, whereas the other two ap-
proaches train their classifiers locally in the device.

In contrast with these and other similar schemes, a number of recent
works have opted for a radically different approach based on maintaining a
synchronized replica of the device in the cloud. ParanoidAndroid [29], Secloud
[42] and CloudShield [1] are illustrative examples of such systems. In these
cases, all security-related tasks, including monitoring, analysis and detection
can be performed in an environment not exposed to battery constraints. Fur-
thermore, multiple detection techniques can be applied simultaneously, as
the clone can be easily replicated. One critical issue with these approaches is
that keeping the clone synchronized involves a constant exchange of activity
update packets. For example, experiments on Paranoid Android show that
synchronizing the device with the cloud replicas require between exchang-
ing traces at 2 KB/s for high-load scenarios and 64 B/s for idle operation.
This definitely consumes power, although it may be worthwile if the clone is
subject to intensive monitoring. From another perspective, such approaches
have some serious privacy implications for many users.

Most proposals in this area do not provide an analysis of the cost in terms
of power consumption of their schemes. In many cases, this issue is simply
ignored. In other cases, power consumption is addressed rather superficially.
For example, Andromaly is claimed to imply a 10% degradation of battery
life when running in the worst scenario (i.e., 8 different classifiers using 30
features), while MADAM reports a power consumption overhead of around
5%. In both cases, however, it is unclear how this performance has been
measured and whether the consumption exhibited is in the same conditions
with and without the detector.

Offloading resource-intensive tasks to the cloud is a topic that has gained
momentum in recent years. Several works (e.g., [22, 25, 36]) have addressed
the issue of deciding whether to cloud is a better option than not to cloud
for mobile systems. For example, in [25] it is shown that determining an
energy efficient strategy is a complex task and require a fine characteriza-
tion of the impact of several parameters, including the type of device and
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the application domain. Their approach focuses on three rather generic ap-
plications: word processing, multimedia and gaming for both laptops and
mobile devices. Authors conclude that “cloud-based applications consume
more energy than non-cloud ones” when using platforms such as mobile de-
vices. In contrast, other works such as [36] and [22] show that offloading
is generally profitable energy-wise, particularly for intensive computation
tasks that require relatively small amount of communications.

A rather different approach is proposed in [31], where the authors explore
collaborative strategies for a mobile sensing platform. The scheme adap-
tively changes the deployment strategy between local and external –though
nearby– sensors with the aim of optimizing power consumption. Anomaly
detection schemes could benefit from a similar approach where the nearby
infrastructure cooperates in monitoring tasks, but we are not aware of any
security-related application for smartphones exploring this possibility.

Finally, the technical issues involved on metering and modelling power
consumption in mobile devices has received much attention lately. Built-in
meters in platforms such as Android provide a coarse power profile and are
inadequate for most applications. Our choice of Appscope [38] in this paper
is motivated by its accuracy and because it provides energy consumption
for each app and process, detailing how much corresponds to CPU usage,
networking, touchscreen, etc. Other alternatives include PowerTutor [40],
Systemtap [9], Eprof [27], and the schemes discussed in [28, 11, 24, 17]

7. Conclusions and Future Work

In this paper, we have discussed the power consumption trade-offs among
various strategies for executing anomaly detection components directly on
mobile platforms or remotely in the cloud. Both our theoretical analys and
experimental results confirm that there is actually little choice but to offload
everything to the cloud. Reasons for this include the differences between the
energy efficiency of computation and communications in current platforms,
and also various parameters related to the anomaly detection setting, such
as the dataset sizes and the operation frequency.

We believe that the linear models provided in this work may be useful in
other contexts to obtain estimates about the power consumption of different
alternatives. Furthermore, such models can be easily extended to other
machine learning algorithms by simply deriving the appropriate coefficients
α and β.

Finally, in this paper we have only considered scenarios involving one
device and the cloud. In a cooperative setting [39, 31], where a number of
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devices agree to help others in some computations (for example, when they
are running out of battery), it is unclear what the best strategy would be.
As users are increasingly equipping themselves with a variety of portable
devices [6], strategies for distributing computational tasks among them so
as to maximize some target energy-related goal (e.g., maximize the overall
battery life of all devices) will have some value [31]. We intend to tackle this
and other related issues in future work.
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