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Abstract— Biometric data are extensively used in mod-
ern healthcare systems and is often transmitted over net-
works for various purposes, raising inherent privacy and
security concerns. Wearable devices, smartphones, and
Internet of Things (IoT) technologies are common sources
of such data, which are susceptible to interception during
transmission. To mitigate these risks, cancelable biomet-
rics offer a promising solution by enabling secure and
privacy-preserving identification. In this study, we propose
a cancelable identification model based on contactless
heart signals acquired via continuous-wave radar. The
recorded signal, which reflects cardiac motion, is first
transformed into a scalogram. Feature extraction is then
performed using Convolutional Neural Networks (CNNs),
comparing models trained via transfer learning with those
trained solely on the dataset. Before classification, the
extracted features are converted into cancelable templates
using Gaussian Random Projection (GRP), and classifi-
cation is performed using a Multilayer Perceptron (MLP).
The proposed method demonstrates feasibility, achieving
91.20% accuracy across all scenarios in the dataset, which
increases to 95.40% when focusing solely on the resting
scenario. Additionally, CNNs trained exclusively on the
dataset outperform pre-trained models using transfer learn-
ing in feature extraction performance.

Index Terms— Biometrics, Cancelable, Privacy, Identifi-
cation, Continuous-Wave Radar, Transfer Learning, Tem-
plate protection, Gaussian Random Projection, Heart dy-
namics

I. INTRODUCTION

IN recent years, the use of physiological data in healthcare
systems has grown significantly, driven by technological

advancements and the need for greater precision and efficiency
in medical services. These data are collected from various
sources, including wearable devices, the Internet of Things
(IoT), and smartphones, which capture information such as
fingerprints, heart rate readings, sleep patterns, and other
physiological indicators. Once collected, the data serve a wide
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range of purposes in healthcare, including user identification,
remote patient monitoring, early disease detection, and per-
sonalized medical treatments.

More specifically, biometrics [1] refer to the measurement
and analysis of unique biological characteristics of individuals,
which are used to identify or authenticate their identity. There
are several types of biometrics, including i) Physical biomet-
rics: These are based on the distinctive physical characteristics
of a person. Common examples include fingerprints, iris, facial
recognition, hand geometry, vascular structure, as well as heart
dynamics used in this study. ii) Behavioral biometrics: These
focus on the behavioral patterns of a person. Examples include
signature, voice, keyboard typing rhythm, or walking style.
These biometric data are captured by specialized devices, such
as fingerprint scanners, facial recognition cameras, photode-
tectors, ECG electrodes or continuous-wave radar, and offer a
secure and efficient way to manage identity and access in the
healthcare domain.

As an identification system, biometrics offer significant
advantages compared to traditional methods based on pass-
words or identification cards. One of the key advantages
lies in the inherent uniqueness of biometric characteristics,
which significantly reduces the risk of fraud and identity theft.
Additionally, biometrics are convenient and quick to use, as
they do not require users to remember complex passwords
or carry physical identification cards. However, biometric
systems also present certain drawbacks. A common concern is
the privacy and security of biometric data, as an individual’s
biometric information is unique and highly sensitive. There is
a risk of biometric data being compromised or stolen, which
could have serious consequences for individuals’ privacy and
security [2]. An approach to address this particular challenge is
through Biometric Template Protection (BTP) schemes. These
methods modify the original biometric template to generate
an alternative representation in a protected feature space,
preventing leakage of information about the original sample
during the identification process. The comparison procedure
is conducted in this secure domain, thus safeguarding the
data throughout the entire recognition process. The ISO/IEC
24745:2022 standard [3] regulates how these schemes should
be implemented. Within BTP schemes, there are two classes:
biometric cryptosystems and cancelable methods. Cancelable
methods involve the irreversible transformation of the original
biometric data into a distorted or masked representation, called
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a cancelable template. This template preserves certain unique
characteristics of the individual that allow for identification
while simultaneously ensuring that the original information
cannot be reconstructed or recovered. Biometric cancellation
can be achieved through various methods, such as encryption,
feature transformation, or the incorporation of random noise
into the biometric data. Cancelable biometric templates must
exhibit the following characteristics [4]:

1) Diversity: A cancelable biometric template should not
be used for more than one application. Each template
must be unique and specific to a particular function or
application, ensuring that it cannot be indiscriminately
used in different contexts.

2) Reusability/Revocability: In case of compromise of
the cancelable biometric template, a new cancelable
template can be issued to replace the compromised one.

3) Non-invertibility: The original biometric template can-
not be recovered from the cancelable biometric template.

4) Performance: The performance of the cancelable
biometric-based system should not degrade compared to
that of a traditional biometric system.

In this article we adopt a cancellation method. By employing
biometric cancellation, systems can safeguard user privacy
while maintaining the ability to accurately identify individuals,
thus mitigating the risk of theft or compromise of biometric
data. Even if the cancelable template is accessed, it will not
reveal useful information about the original biometric traits of
the individual. This removes the need for key management,
reducing the risk of key compromise. Additionally, cancel-
lation methods, unlike biometric cryptography, allow for the
creation of unique templates for different applications and
provide revocability, thereby enhancing privacy without the
need for complex cryptographic processes. This technique has
also been studied to preserve the privacy of various biosignals,
including fingerprints [5], iris patterns [6], and palmprints [7].

In the field of heart signals, cancelable identification meth-
ods have been developed using ECG [8]–[10]. However, this
technology has the drawback of requiring physical contact to
capture the signal, which makes the identification method less
versatile and applicable. In contrast, cardiac motion can be
captured without contact through Continuous-Wave radar, pro-
viding a unique identifier for each individual, thereby enabling
identification [11]. Although some studies have explored the
effectiveness of this method for identification, they remain
limited, typically involving a small number of subjects in a
single resting scenario, and none have incorporated cancel-
lation techniques [12]. Therefore, the objective of this paper
is to advance the development of identification methods using
such cardiac signals by creating a more secure method through
the integration of cancellation techniques and by studying the
impact of physiological variability on its performance.

A. Background
This article specifically explores the use of cardiac signals

captured by radar, which reflect subtle chest wall movements
caused by each heartbeat. The heart consists of two upper
chambers (atria) and two lower chambers (ventricles). The

circulation of oxygenated blood throughout the body is facil-
itated by the contraction (systole) and relaxation (diastole) of
these four chambers in different phases. Each cycle is unique,
varying in terms of volume, shape, movement dynamics, and
heart deformation. These stages can differ among individuals
due to factors such as size, position, heart anatomy, and
thoracic configuration, making this signal a biometric identifier
similar to how it occurs with ECG. Clinical investigations
have confirmed that no two individuals have identical pat-
terns of cardiac blood circulation [13]. Measuring the chest
displacement produced by the heartbeat is directly linked to
the sphygmogram, which represents changes in blood pressure
over time. Specifically, the change in volume (∆V ) and
pressure (∆P ) within an artery are related by the volumetric
elasticity coefficient E [11], expressed as:

E =
∆P

∆V
(1)

The radar-captured signal corresponding to chest movement
combines superimposed components of venous and ventricular
pulses. Continuous-wave radar technology is used to detect
these signals by emitting and receiving continuous electromag-
netic waves. When these waves interact with the heart and
surrounding tissues, they produce a frequency shift that can
be analyzed to extract valuable cardiac information [14]. This
frequency shift is caused by the Doppler Effect, a phenomenon
that occurs when electromagnetic waves reflect off a moving
surface—in this case, the chest wall. The heartbeat generates
slight chest movements, causing variations in the frequency of
the reflected wave that enable the radar to capture and analyze
these subtle cardiac fluctuations. A continuous-wave radar
system includes a transmitter that emits electromagnetic waves
and a receiver that detects the reflected signals. The transmitter
generally has a radar antenna focused on the target area,
and a data acquisition system collects and digitizes the radar
signals for further analysis. This non-contact method offers
several advantages, such as enabling continuous identification,
capturing a broader range of data with minimal effort from
the user, and maintaining a higher level of hygiene compared
to other methods like ECG. Additionally, this technology can
monitor respiratory patterns alongside cardiac activity simulta-
neously. However, there are limitations: currently, limited data
are available for in-depth studies on this technology, and the
signals may be more vulnerable to noise interference caused
by unwanted movements, such as body motion, which remains
an active area of ongoing research [15], [16].

B. Paper contribution
This paper proposes a cancelable identification system based

on heart signals acquired non-invasively using continuous-
wave radar. After preprocessing the signals and isolating the
components corresponding to heartbeats, these are transformed
into images (scalograms). Convolutional Neural Networks
(CNNs) are used to extract features from these images, which
are then employed to generate cancelable templates using
Gaussian Random Projection (GRP). Finally, a Multilayer
Perceptron (MLP) is used to classify these templates and
identify individuals. The application of this type of signal in
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the healthcare field is still in its early stages, and both studies
and publicly available datasets remain scarce.

The main contributions of this paper are as follows:
• We propose, for the first time, a cancelable identification

system based on contactless cardiac signals captured
through Continuous-Wave radar, addressing the limita-
tions of traditional ECG-based methods that require phys-
ical contact.

• We introduce the integration of cancelable biometric
template protection (GRP-based) into a contactless car-
diac identification system, ensuring enhanced privacy and
security of the biometric data.

• We conduct a study of physiological variability and its
impact on the performance of the identification system
across different scenarios, providing insights into the
robustness of the proposed method throughout different
situations.

• We evaluate and compare the performance of CNN
models using transfer learning with models trained from
scratch for feature extraction from scalograms that syn-
thesize cardiac information.

II. RELATED WORK

In this section, we review the current scientific literature
relevant to our topic, categorizing it into two parts. Firstly, we
examine articles focusing on the identification of individuals,
especially using cardiac signals. Secondly, we explore articles
that employ cancellation methods for biometric identification.

A. Identification using cardiac signals
In the field of biometrics, several modalities have tradi-

tionally received special attention, such as fingerprints, iris,
or face recognition [17]. In the domain of cardiac-based
biometrics, the most extensively analyzed signal has been
the electrocardiogram (ECG) [18], with notable and promis-
ing results since as early as 2001 [19]. Initially, ECG was
used to obtain heart rate [20], but later its use expanded
for diagnosis [21], [22] or identification [23]–[25]. Several
studies have focused on enhancing ECG-based identification
by leveraging machine learning and deep learning techniques.
For instance, [26] proposed a cascaded CNN architecture
to improve identification accuracy, reaching 94.3% accuracy.
Furthermore, [27] utilized Long Short-Term Memory (LSTM)
networks to capture the temporal dynamics of the ECG signal,
demonstrating a high accuracy of 97.3% in a dataset with 290
subjects. Recent approaches have explored novel representa-
tions of ECG signals. For example, [28] transformed ECG
data into heatmaps, referred to as the Elektrokardiomatrix,
and processed them using a CNN with a single convolutional
layer, achieving an accuracy of 99.53%. Additionally, [29]
proposed a novel biometric authentication system based on
ECG detection, called BAED. This system utilizes deep learn-
ing algorithms, including a CNN and LSTM network, and is
evaluated on both on-person and off-person databases. The
model outperformed prior state-of-the-art approaches, reaching
99.49% accuracy with 90 subjects. Finally, in [30], the ECG
signal was converted into a scalogram. Features were then

extracted using a CNN and classified with a Support Vector
Classifier (SVC), achieving 99.21% accuracy.

In addition to traditional ECG-based identification, several
studies have investigated the use of heart rate (HR) and
heart rate variability (HRV) as complementary or standalone
biometric traits. For instance, in [31] they developed a method
for short-term ECG-based identification that minimizes the
effect of heart rate on the biometric template, achieving
robustness against HR variations. Similarly, in [32] they
proposed a methodology that explicitly incorporates HR into
the identification model using Gaussian Mixture Models and
Hidden Markov Models (GMM-HMM), achieving high accu-
racy. Beyond HR, HRV has also been explored as a potential
feature for identification. In [33], an accuracy of 82.22% was
achieved using HRV for biometric recognition, which was
later improved by optimizing feature selection with genetic
algorithms [34].

However, one of the main disadvantages of ECG is that it
requires physical contact with the body to form an electrical
circuit with the heart in it [35]. This renders ECG less
suitable for applications such as continuous identification or
monitoring of heart activity in daily life or during sleep.
Therefore, the use of radar for capturing cardiac signals can
be particularly advantageous in certain applications. In this
context, studies have employed various types of radar, such as
Continuous-wave (CW) radar, Ultra-wideband (UWB) radar,
and Frequency-modulated continuous wave (FMCW) radar.
Among these, CW radar is most commonly used, likely due
to its technical simplicity and low cost [36]. This radar can
detect variations in chest movement [37], making it possible to
isolate the heart signal. To further refine the cardiac signal and
eliminate noise components, body movements, and respiration,
some studies use a Butterworth filter [38]. However, in [39],
the authors demonstrate that Wavelet Packet Decomposition
(WPD) outperforms Bandpass filters and Peak detection in
isolating respiratory and cardiac signals. Later, in [40], various
methods for this purpose were compared, including WPD,
among which Discrete Wavelet Transform (DWT) achieved
the best results.

In 2017, a method for identification based on the cardiac
signal extracted via CW radar was developed [41] based on
fiduciary analysis of the signal, which aims to identify specific
points in the cardiac cycle that serve as stable references. In
[11], the signal was divided into individual heartbeats. After
resampling the heartbeats to a fixed number of samples, they
were classified. In [42], they transformed the signal into spec-
trograms, which were then classified using Deep Convolutional
Neural Networks (DCNNs). The applications of CW radar
also span other fields such as identification from respiratory
signals [43], gait recognition [44], event recognition [45],
emotion recognition [46], and multi-person spatial tracking
[47]. Nevertheless, it remains a relatively recent technology
whose applications have barely been developed.

B. Cancellation techniques for biometrics

Cancelable biometrics techniques [48] intentionally and re-
peatably distort biometric data through transformations. Such
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distortion can be applied either in the signal domain or the
feature domain, preserving certain unique individual charac-
teristics for identification purposes while ensuring that the
original information cannot be reconstructed or recovered.
These techniques can be categorized into two types: i) trans-
formation schemes, which involve applying transformations
to biometric data using parameterized one-way functions by
secret information s, and ii) salting schemes, which involve
incorporating additional information to the original biometric
data in a unique and specific manner for each user or appli-
cation context.

Within transformation schemes, various types are found
such as Geometric Transforms, Random Permutations, Bio-
Convolving, Polynomial Transforms, Random Projections, Hill
Cipher, Correlation Filters, or Bloom Filters [49]. Specifically,
Random Projections reduce the dimensionality by mapping
biometric information onto random subspaces. Different dis-
tributions, such as Gaussian or sparse, determine the ele-
ments of the projection matrix, impacting both security and
computational complexity [50]. Various techniques leveraging
Random Projections have been developed for this purpose,
including BioHashing [51], Random Multispace Quantization
[52], Multi-space Random Projections [53], User-dependent
Multi-state Discretization [54], Sectored Random Projections
[55], Random projections with vector translation [56] or
Dynamic Random Projections [57].

In [58], a cancelable multi-biometric system for person
recognition based on fingerprint and finger-vein biometrics is
proposed. This system utilizes an enhanced partial discrete
Fourier transform (EP-DFT) non-invertible transformation to
provide template protection and revocability.

Among the different variants of Random Projection, one
of the most common is Gaussian Random Projection (GRP).
For example, in [59], GRP is used as a cancelable method to
identify individuals based on their iris, achieving an average
accuracy of 95.65%. In [60], this technique is applied to
fingerprint images for the same purpose. Other examples
include its application in facial recognition [61] and palm-
print recognition [62].

While there has been significant research on cancelable
identification methods using fingerprints, face, or iris, the
literature based on heart signals is not as extensive. ECG-
based recognition has been investigated, for instance, in [63],
where an ECG-Hash is used for template generation. In
[64] they proposed a cancelable ECG biometric recognition
system using a generalized likelihood ratio test (GLRT) in
the compressive sensing domain. This system demonstrates
resistance to various attacks through a random row permuta-
tion revocation mechanism. In [65], Subspace Collapsing is
used to project ECG signals into a lower-dimensional space
to obtain cancelable templates using a procedure conceptually
similar to GRP, as both rely on projecting features into
lower-dimensional spaces. In [66], they use an encryption
method based on a 3D chaotic logistic map to transform ECG
features into secure and revocable templates. The 3D chaotic
logistic map is a nonlinear dynamic system with chaotic
behavior, meaning it is highly sensitive to initial conditions and
generates pseudo-random sequences. These properties make

Fig. 1. Overview of the identification process

it suitable for encryption purposes, as small changes in the
input lead to significant and unpredictable changes in the
output. In [67], using one-dimensional ECG and audio signals,
a blind signal separation algorithm is employed to obtain
distorted ECG signals that can be used as cancelable templates.
However, to the best of our knowledge, no studies have yet
explored the feasibility of a cancelable identification process
using non-contact heart signals extracted via radar.

III. MATERIALS AND METHODS

This section examines the dataset used, comprising cardiac
signals from 30 patients across various physiological scenar-
ios, and outlines the procedure used to develop a cancelable
identification method based on these signals. As illustrated
in Fig. 1, the procedure begins by dividing each patient’s
recording, lasting several minutes, into 10-second segments,
which are subsequently used as input for the identification
model. The goal is to identify which of the 30 patients
each test window corresponds to. To achieve this, we first
apply arctan demodulation and the Maximal Overlap Discrete
Wavelet Transform (MODWT) method to extract the cardiac
movement component from each 10-second window. This 10-
second cardiac signal is then subdivided into 4-second frames
as a form of data augmentation. For each frame, a scalogram
is generated, and its features are extracted using a CNN.
These features are then transformed into a cancelable template
through the application of GRP. Finally, an MLP classifier
categorizes these templates among the 30 patients, assigning a
predicted patient to each frame. To assign a final prediction for
the entire window, a majority vote is conducted, considering
the predictions for all frames within the window. In this way,
the model outputs the predicted patient for the full window.

A. Data
The research utilized a publicly accessible dataset [68]

gathered at Erlangen University Hospital in Germany, com-
prising records from 30 individuals (14 men and 16 women)
with an average age of 30.7 years, where a radar system
captured chest movements in a contactless manner. These chest
movements result from a combination of body movements,
respiration, and heartbeat. The radar system used in the study
was optimized for a distance of approximately 40 cm from the
area of interest. Utilizing Six-Port technology, the system was
designed for mobility and features a bi-static antenna setup
with transmitting and receiving antennas set at ±10◦ angles
and a laser for alignment purposes.
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The measurements comprised five distinct scenarios: a rest-
ing scenario where participants reclined in a relaxed position
for at least 10 minutes with calm breathing; a Valsalva maneu-
ver scenario involving three repetitions of forceful expiration
against a closed glottis for 20 seconds, with intervals of 5
minutes; an apnea scenario where participants held their breath
after inhaling or exhaling completely, with raw signal record-
ing during the transition to apnea; a tilt-up scenario where the
tilt table was gradually raised from 0 degrees to 70 degrees to
induce autonomic nervous system responses; and a tilt-down
scenario starting from the 70 degrees tilt-up position, gradually
lowering the table back to the starting horizontal position,
with similar ANS reactions anticipated. The recordings in the
Resting, Tilt-down, and Tilt-up scenarios lasted approximately
10 minutes. In the Apnea scenario, the duration was typically
shorter, ranging from 2 to 8 minutes, while in the Valsalva
scenario, the duration consistently exceeded 15 minutes. The
dataset is accessible at [69].

B. Preprocessing

With the quadrature signals I/Q provided by the dataset, the
first step is to segment these signals into temporal windows.
The literature reports various window durations, ranging from
a few seconds, such as 5 seconds in [70], 6 seconds in [42],
and 10 seconds in [71], to longer intervals of 20 or 50 seconds
[72]. In our study, we have selected a 10-second window
to strike a balance between model efficiency and practical
applicability. However, further investigation into how the size
of this window influences the model’s performance will be
a topic for future research. Once we have segmented the
recordings into 10-second windows, the next step is to de-
modulate the I/Q signal. Several methods for this process have
been analyzed in [73], among which arctangent demodulation
is one of the most commonly used [41], [74]. Therefore,
we perform ellipse fitting on the I/Q points within each
window, following the procedure outlined in [75], to carry out
arctangent demodulation using the parameters obtained from
the fitted ellipse [76]. The result of this process corresponds to
the movement occurring in the region of interest (the thorax),
which is composed of different components, with the main
ones being the patient’s movement, respiration, and cardiac
motion. To isolate the latter, we apply the Maximal Overlap
Discrete Wavelet Transform method (MODWT) following
[77], where the method’s performance is evaluated against
alternative approaches yielding better results. Subsequently,
the signal corresponding to the cardiac motion of each window
is subdivided into frames to classify each frame, similar as in
[11] is done with heartbeats. From the signal of each frame,
we obtain its scalogram.

A scalogram is a visual representation of how the frequency
components of a signal evolve over time [78]. It is obtained
by applying a Continuous Wavelet Transform (CWT) to the
signal, decomposing it into frequency components across time.
Unlike a traditional time-domain or frequency-domain repre-
sentation, the scalogram combines both time and frequency
dimensions, showing how the frequencies change with respect
to time. In this representation, the horizontal axis corresponds

to time, and the vertical axis represents scales, which are
inversely related to frequency—higher scales correspond to
lower frequencies, while lower scales correspond to higher
frequencies. Scalograms are particularly useful for analyzing
non-stationary signals, such as cardiac signals, as they cap-
ture both temporal and frequency-based features that can be
leveraged for classification tasks, like those performed with
Convolutional Neural Networks (CNNs). In addition to the
scalogram, several other techniques can transform a signal into
an image for analysis with CNNs. The study in [79] compares
the effectiveness of various methods for extracting signal
features, including Gramian Angular Field, Markov Transition
Field, Recurrence Plot, Grey Scale Encoding, Spectrogram,
and Scalogram. Among these, the scalogram demonstrated
the best performance though the authors also noted that the
effectiveness of each method may vary based on the type of
dataset used. While research on cardiac radar signals is limited,
the scalogram has been widely and successfully applied in the
field of ECG, particularly due to its robustness with noise-
sensitive signals [80]–[84]. In our case, the scalograms are
generated by applying the CWT to radar signals using the
PyWavelets library. The Morlet wavelet, known for its good
time-frequency localization properties, is chosen for its effec-
tiveness in capturing frequency variations over time, especially
in non-stationary signals [85]. In the resulting scalogram, the
horizontal axis represents time, illustrating how the signal’s
frequency components evolve over time. The vertical axis
corresponds to the frequency of the signal, typically ranging
from 0 to 0.35 Hz, though it is represented in terms of scale
due to the nature of the CWT.

For the segmentation of windows into training and testing
sets, a specific percentage of the last windows in each patient’s
recording is selected as the test set (the last 20% of them),
while the remaining windows constitute the training set. By
selecting the last 20% of the windows from each patient
for testing, we implement a temporal split. This approach
more closely mirrors the real-world application of this system
compared to a random split of the windows, as test samples are
likely to be collected at temporally distant intervals, sometimes
several months apart, from the training samples.

C. Feature extraction and Transfer Learning

Convolutional Neural Networks (CNNs) are nowadays one
of the main methods for feature extraction in the field of com-
puter vision [86]–[88]. Their hierarchical architecture, which
mimics the visual cortex’s organization in the human brain
allows them to automatically learn meaningful representations
from raw pixel data demonstrating exceptional performance
across a wide range of visual tasks. Transfer learning [89],
[90] can boost the performance of these networks by taking
pre-trained models on large datasets like ImageNet [91] and
fine-tuning them on specific tasks with different datasets.
This approach not only accelerates the training process but
also often leads to improved generalization performance, as
the pre-trained model has already learned rich hierarchical
features from vast amounts of data. Transfer learning has
not only demonstrated great potential for real-world image
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analysis but has also yielded strong results when processing
signal-derived images, such as spectrograms and scalograms
[92]–[97]. This makes it a relevant technique to consider for
feature extraction, as it has proven effective in previous studies
involving scalograms derived from other types of biosignals.

In this study, we tried feature extraction using five pre-
trained networks: ResNet50 [98], DenseNet [99], ShuffleNet
[100], VGG-19 [101], and Xception [102]. In these networks,
we replace the last dense layers with others adapted to our
problem, training only the parameters of these layers and
freezing the rest [103]. The objective of transfer learning
is to improve the performance and convergence speed on
a target task with limited data often leading at the same
time to better generalization. In addition to these networks,
we used a customized CNN for feature extraction that was
trained solely with the dataset scalograms. Its architecture,
depicted in Figure 2, consists of five convolutional layers
progressively increasing the depth of the representation. Fol-
lowing each convolutional layer, batch normalization [104]
is applied, along with ReLU activation to introduce non-
linearities, and max pooling. After the convolutional layers,
the output is flattened and passed through two fully connected
layers, serving as the final classifier, with the output processed
through a LogSoftmax activation function. In Table I, the
processing details of a batch of images with dimensions
3 × 224 × 224 (channels × height × width) are outlined,
where b represents the batch size, and Param # refers to the
number of adjustable parameters associated with each layer of
our CNN. The adjustable parameters in a neural network are
the values that the network learns during the training process to
minimize the prediction error. These include the weights of the
connections between neurons and the biases associated with
each neuron. In a convolutional layer (Conv2d), the weights
correspond to the filters applied to the input, and the bias
is a value added to the result of the convolution. In a batch
normalization layer (BatchNorm2d), the adjustable parameters
are the scale and shift factors used to normalize the data.
In fully connected layers (Linear), the adjustable parameters
are the weights of the connections between input and output
neurons, along with the biases. Activation layers such as ReLU
and pooling layers like MaxPool2d do not have adjustable
parameters, as they only modify the data without learning a
value.

D. Cancellation and classification

Once feature extraction has been performed on each scalo-
gram, we apply a cancellation technique. In this study, Gaus-
sian Random Projection (GRP) [105] is employed for this
purpose. GRP facilitates the projection of high-dimensional
biometric feature vectors onto lower-dimensional spaces using
randomly generated Gaussian matrices, thereby preserving the
discriminative information essential for biometric identifica-
tion. Random projections have the effect of reducing the
dimensionality of the data. If we let N denote the number of
samples and M denote the number of features extracted from
each sample, by multiplying the feature matrix X ∈ RN×M

by a matrix A ∈ RM×m whose elements follow a certain

TABLE I
STRUCTURE OF THE CUSTOMIZED CNN

Layer (type) Output Shape Param #
Conv2d-1 [b, 16, 220, 220] 1,216
BatchNorm2d-2 [b, 16, 220, 220] 32
ReLU-3 [b, 16, 220, 220] 0
MaxPool2d-4 [b, 16, 109, 109] 0
Conv2d-5 [b, 64, 107, 107] 9,280
BatchNorm2d-6 [b, 64, 107, 107] 128
ReLU-7 [b, 64, 107, 107] 0
MaxPool2d-8 [b, 64, 53, 53] 0
Conv2d-9 [b, 128, 41, 41] 1,384,576
BatchNorm2d-10 [b, 128, 41, 41] 256
ReLU-11 [b, 128, 41, 41] 0
MaxPool2d-12 [b, 128, 20, 20] 0
Conv2d-13 [b, 256, 16, 16] 819,456
BatchNorm2d-14 [b, 256, 16, 16] 512
ReLU-15 [b, 256, 16, 16] 0
MaxPool2d-16 [b, 256, 8, 8] 0
Conv2d-17 [b, 512, 7, 7] 524,800
BatchNorm2d-18 [b, 512, 7, 7] 1,024
ReLU-19 [b, 512, 7, 7] 0
MaxPool2d-20 [b, 512, 4, 4] 0
Linear-21 [b, 1024] 8,389,632
ReLU-22 [b, 1024] 0
Dropout-23 [b, 1024] 0
Linear-24 [b, 30] 30,750
LogSoftmax-25 [b, 30] 0

probability distribution, such as the Gaussian distribution, we
obtain a new feature matrix Y ∈ RN×m with m < M . This
operation can be mathematically expressed as:

Y = X ·A (2)

where Y is the resulting feature matrix, X is the original
feature matrix, and A is the random projection matrix.

Through the Johnson-Lindenstrauss lemma [106], we know
that when performing this projection, the relative distances
between any pair of points are approximately preserved in the
new feature space following the next rule.

Johnson-Lindenstrauss lemma: For any 0 < ε < 1 and any
integer n, let m be a positive integer such that m ≥ m0 =
O(ε−2 log n). For any set S of n points in RN , there exists a
map f : RN → Rm such that, for all u, v ∈ S:

(1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2 (3)

where ||.|| denotes the vector 2-norm. Thanks to the approxi-
mate preservation of these distances in the new feature space,
effective classification of the samples is possible, thereby
enabling the identification of the corresponding subject for
each one [107].

An influential parameter in the GRP process is ϵ, which
regulates the quality of dimensionality reduction. Its signifi-
cance lies in determining the degree of orthogonality among
the randomly generated projection vectors. A lower ϵ value
results in more precise projections, ensuring that the projected
vectors closely approximate orthogonality. However, achieving
this higher precision often comes at the cost of increased com-
putational complexity. Conversely, a higher ϵ value expedites
computation but may compromise precision, as the projected
vectors deviate further from strict orthogonality.
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Fig. 2. Structure of the customized CNN (graph)

Finally, we employ a Multilayer Perceptron (MLP) to clas-
sify the cancelable template of each frame. Its architecture
consists of three hidden layers with 1024, 256, and 64 neurons,
respectively, each utilizing the ReLU activation function to
introduce non-linearity. To prevent overfitting, a dropout rate
of 0.2 is applied after each hidden layer. The model is trained
using the Adam optimizer with a learning rate of 0.001
and a batch size of 1024. The number of training epochs
is dynamically determined through early stopping, ceasing
training if the validation performance does not improve for
10 consecutive epochs. After obtaining frame-level predictions
with the MLP, the final class for each window is determined
by majority voting across the predictions of its constituent
frames.

IV. RESULTS

In this section, we examine the different experiments con-
ducted to develop a cancelable identification method, as well
as the results obtained. First, we performed a comparison of
several CNN architectures to determine which one extracts
features from the scalograms more efficiently. To this end,
we compared multiple CNN architectures initialized with pre-
trained weights from the ImageNet-1K (v1) dataset [108], uti-
lizing transfer learning, with a custom CNN trained solely on
the scalograms from the training set. The latter provided better
results. Additionally, when converting the features extracted
from the scalograms by the CNN into cancelable templates,
a key parameter is the amount of dimensionality reduction
applied. In Subsection C, we analyze how this parameter
influences the model’s performance. Finally, in Section D, we
study the identification results across each of the five scenarios,
achieving an accuracy of 95.40% in the Resting scenario.

A. Metrics

When assessing the efficiency of the identification pro-
cess, we will utilize various metrics, with accuracy being
the primary one due to its reliable reflection of the model’s
performance when classes are balanced. Accuracy is defined

as:

Accuracy =
Number of correctly identified samples

Total number of samples
(4)

Additionally, we will consider other metrics such as False
Acceptance Rate (FAR), False Rejection Rate (FRR), preci-
sion, recall and F1-score, defined in terms of False Positives
(FP), True Positives (TP), False Negatives (FN), and True
Negatives (TN) [109]. FAR measures the rate at which the
system incorrectly identifies an unauthorized user as being
authorized:

FAR =
FP

FP + TN
(5)

FRR reflects the rate at which the system incorrectly rejects
an authorized user:

FRR =
FN

FN + TP
(6)

Precision represents the ratio of correctly identified positive
cases to the total number of cases identified as positive:

Precision =
TP

TP + FP
(7)

Recall measures the ratio of correctly identified positive cases
to the total number of actual positive cases:

Recall =
TP

TP + FN
(8)

and F1-Score, which is the harmonic mean of precision and re-
call, offers a balanced assessment of the model’s performance,
especially when there is an imbalance between classes:

F1-Score = 2× Precision × Recall
Precision + Recall

(9)

B. Feature extraction evaluation and analysis
To evaluate how effectively each network extracts features,

we performed the classification on a validation set using an
MLP, based on features extracted by each network without
the use of cancellation templates. The results are presented in
Table II, reflecting both the accuracy in predicting the patient
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TABLE II
ACCURACY IN CLASSIFICATION USING DIFFERENT NETWORKS FOR

FEATURE EXTRACTION

All scenarios Resting scenario

Network Windows acc. Frames acc. Windows acc. Frames acc.

ResNet50 88.32 77.88 93.09 87.92
VGG-19 85.88 77.72 89.51 84.57
Xception 85.15 74.36 92.07 85.70
DenseNet 84.35 71.00 91.30 82.54
ShuffleNet 80.22 67.72 87.72 75.34
Customized CNN 89.46 80.87 96.16 91.09

for the 10-second windows and for the 4-second frames into
which these windows are subdivided.

These results show that feature extraction, both in the
Resting scenario and in the combined set, is performed more
effectively by our customized CNN, which was not pre-trained
on other images and therefore does not use transfer learning.
Among the pre-trained networks we used, ResNet50 performs
the best. This outcome may be partly due to the difference
between the images in our dataset and those in ImageNet,
on which ResNet50 was originally trained. More importantly,
it may suggest that the type of feature extraction needed to
classify our images differs fundamentally from the feature
extraction required to recognize objects in natural images. This
suggests a potential domain mismatch [110]. In any case, for
the remainder of the study, we considered only our customized
CNN for feature extraction unless otherwise specified.

In addition, to gain a deeper understanding of the mecha-
nisms underlying our CNN and how it identifies patients from
scalograms, we conducted an analysis of the activation patterns
generated by the network. For this purpose, we utilized the
Convolutional Block Attention Module (CBAM), introduced
in [111], which has previously been applied to study inter-
pretability in the analysis of other biosignals, such as ECG
[112]–[114]. This approach is in line with the principles of
Explainable Artificial Intelligence (XAI) described in [115],
which emphasize the importance of ensuring transparency in
AI models and enabling human understanding of the reasoning
behind decisions, particularly in high-stakes applications like
healthcare. CBAM is an attention mechanism designed to
enhance the performance of convolutional neural networks
by enabling them to focus on the most relevant features of
the input data. This mechanism is applied sequentially in
two stages: channel attention and spatial attention. Channel
attention assigns a weight to each feature channel, helping
the model identify the most informative channels for the
task. On the other hand, spatial attention assigns weights to
specific spatial locations within each feature map, helping the
model focus on the most relevant regions within the image
or signal. These complementary mechanisms enhance perfor-
mance and interpretability by helping the network prioritize
the features and regions that most influence its decisions. In
our case, we incorporated the CBAM module following the
RELU-15 layer (see Table I) and retrained the CNN. The
inputs to the module consist of 256 feature maps of size
16 x 16, to which a 3 x 3 kernel is applied. In Figure 3,
we present six randomly selected scalograms alongside their

Fig. 3. Randomly selected scalograms (left), corresponding spatial
attention map (center), and channel with highest attention (right)

corresponding spatial attention maps and the feature map
exhibiting the highest channel attention. It is worth noting
that the visualization of the original scalograms (with time
on the horizontal axis and frequency on the vertical axis) is
not particularly intuitive for the human eye, as the presence
of high values in the lower frequencies (at the bottom)
obscures more subtle yet important differences in the higher
frequencies. However, as observed in the central column, the
CBAM consistently places greater attention on mid-to-high
frequencies, potentially because these regions contain the most
discriminative information for distinguishing between subjects.
In the right column, we present the feature map exhibiting
the highest attention for each scalogram, where, in certain
cases, regions corresponding to high and mid frequencies are
also accentuated. While further detailed and comprehensive
analysis is needed to draw definitive conclusions, these initial
findings suggest that these frequency regions may play a
crucial role in patient identification within each scalogram.
This observation suggests the need for further investigation
and provides a potential direction for research.

C. GRP and dimensionality reduction
By randomly projecting the data onto a lower-dimensional

subspace defined by Gaussian distributions, GRP effectively
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Fig. 4. Accuracy vs. Strength of dimensionality reduction in GRP

compresses the data representation. The parameter ϵ governs
the degree of compression, with smaller values leading to
less aggressive reduction and higher-dimensional projections,
while larger values result in more compact representations. We
conducted a comparative analysis of dimensionality reduction
effectiveness as a function of the GRP parameter ϵ, in relation
to the resulting accuracy. Figure 4 illustrates this in two differ-
ent contexts: identification in any scenario and identification in
the Resting scenario. The x-axis shows the percentage obtained
by dividing the number of features in the cancelable templates
by the number of original features from the CNN. It can be
seen that accuracy exhibits a seemingly indifferent response
to varying degrees of dimensionality reduction.

Concerning scenarios, as expected, outcomes within the
Resting scenario outperform those of all scenarios, likely due
to its inherent homogeneity compared to settings involving
disturbances such as tilt variation or apnea. The figure also
confirms that using a customized CNN for feature extraction
yields better performance than transfer learning.

D. Identification

Finally, we analyze the efficiency of patient identification
using the complete model. Initially, we extract features with
both ResNet50 and our customized CNN and apply GRP to
generate cancelable templates with ϵ = 0.6. As previously
mentioned, the train-test split was done temporally. Using
a random split would have yielded notably higher accuracy
but would not reflect a realistic real-world scenario. When
breaking down the predictions by scenario, as illustrated in
Table III, we can observe that the results obtained by extract-
ing features with our CNN are superior across all scenarios.
We can also observe that the most challenging scenarios to
predict are Apnea and Tilt Up, while the results for the
other scenarios exceed 90% accuracy. The difficulty in the
Tilt Up scenario might be partly due to the significant effort
required by the heart as the body moves from a horizontal to a
vertical position, given that the organs with the highest blood
demand are located in the upper part of the body. For the
Apnea scenario, the recordings are shorter than in the other
scenarios, with only three apneas per recording, which may
result in insufficient training data for effective generalization,

also considering that apneas can be of two different types: after
inhaling or after exhaling. Table IV provides a more detailed
overview of the metrics obtained during the classification
process, both in the Resting scenario and across all scenarios.

TABLE III
ACCURACY OF THE MODEL IN DIFFERENT SCENARIOS USING

RESNET50 AND CUSTOMIZED CNN FOR FEATURE EXTRACTION

Scenario ResNet50 Customized CNN

Apnea 70.71 74.75
Resting 93.86 95.40
TiltDown 93.54 95.51
TiltUp 73.65 78.19
Valsalva 94.69 94.87

Furthermore, predicting the class of each window by voting
over its frames allows us to obtain a confidence measure.
That is, each window w is decomposed into a set of frames
{fw

i | i ∈ {1, 2, ..., k}}. For each frame fw
i , the model

provides a prediction of which class it belongs to, c(fw
i ),

and the predicted class of the window is the mode of the
predictions of its frames:

c(w) = mode(c(fw
1 ), c(fw

2 ), ..., c(fw
k )) (10)

As explained in Section III, this means that the class
prediction for a window is determined by the majority vote
(mathematically expressed by the mode) of the class predic-
tions made by the MLP for each individual frame within the
window. This approach allows us to estimate the confidence
of the prediction, which we define as:

confidence of c(w) =
|{fw

i | c(fw
i ) = c(w)}|
k

(11)

where k is the number of frames into which each window
is divided. If the model predicts that window w belongs
to a certain patient pi, this confidence measure reflects the
percentage of frames within w that the model assigns to
that patient pi. For example, if the confidence of a window
is 0.9, it means the model predicts that 90% of its frames
correspond to patient pi, indicating a high level of confidence
in the prediction. In Figure 5, we have grouped the windows
into bins according to their confidence level and prediction
outcome. A window is considered to have a successful pre-
diction when the class predicted by the model matches the
actual patient to whom the window belongs. Otherwise, the
prediction is classified as a failure. Moreover, while observing
that most windows are predicted with high confidence (64.29%
of windows show a confidence level exceeding 90%), we also
observe that the actual accuracy within each confidence range
is higher than the estimated confidence. This suggests that
the confidence values provided by the model are conservative
estimates. This relationship is further illustrated in Table V,
which compares the confidence estimates provided by the
model (Confidence Range) with the actual prediction accuracy
(Success Percentage) for the test windows. The success rate
consistently exceeds the confidence estimates in all cases.

All experiments were conducted on a workstation equipped
with an Intel 12th Gen Core i7-12700KF CPU and an NVIDIA
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TABLE IV
PERFORMANCE METRICS FOR RESNET50 AND CUSTOMIZED CNN MODELS IN DIFFERENT SCENARIOS

Accuracy FAR FRR Precision Recall F1-score
(%) (%) (%) (%) (%)

All scenarios

ResNet50 89.10 10.50 10.90 89.50 89.10 0.891
Customized CNN 91.20 8.50 8.80 91.50 91.20 0.912

Resting scenario

ResNet50 93.10 5.70 6.90 94.30 93.10 0.931
Customized CNN 95.40 3.90 4.60 96.10 95.40 0.954

Fig. 5. Prediction confidence of windows by success

TABLE V
SUCCESS PERCENTAGE BY CONFIDENCE RANGE

Confidence Range Success Percentage

0% - 10% -
10% - 20% 33.33%
20% - 30% 31.34%
30% - 40% 44.93%
40% - 50% 65.69%
50% - 60% 78.08%
60% - 70% 90.24%
70% - 80% 95.24%
80% - 90% 97.09%
90% - 100% 99.91%

GeForce RTX 3080 Ti GPU with 12 GB of memory, running
Ubuntu OS. The computational demands of the proposed
approach are primarily associated with the model training
phase, which took approximately 195 minutes, a process
that is performed only once. Once the model is trained, its
execution time for processing a single window is small, less
than 2 seconds. This time could potentially be further reduced
through algorithmic optimization or the use of additional
computational resources. This efficiency makes it suitable for
real-world applications, offering a continuous identification
solution with minimal latency.

V. DISCUSSION

The results obtained in our study demonstrate that can-
celable identification based on the contactless extraction of
cardiac signals using continuous-wave radar is feasible, thus

enabling a continuous user identification system. To contex-
tualize these findings within the broader field of cancelable
biometrics, Table VII provides an overview of representa-
tive ECG-based approaches. Although our method differs
substantially from these works in terms of datasets, signal
modalities, and experimental setups, the table highlights that
the performance achieved by our radar-based approach is
comparable to that of ECG-based techniques. The aim is
not to present a direct comparison, but rather to illustrate
the potential of contactless radar as a viable alternative for
biometric identification.

In our study, accuracy exceeds 95% in two out of the five
scenarios, and reaches 94.87% in another. In the remaining two
scenarios—Apnea and Tilt Up—the performance is lower, with
accuracies of 74.75% and 78.19%, respectively. In the case of
Apnea, the recordings are shorter, and only three apneas occur,
with the last one appearing in the test set. In Tilt Up, it is likely
that the physiological system disruption is significant due to
the heart making a greater effort to continue providing blood
flow to the upper part of the body, where the brain is located,
which is the organ that requires the most blood in this context.
To improve the results in these two scenarios, it would likely
be necessary to have more data to train the model. It should
also be noted that the results in Table III were obtained using
a single model that predicts identity without accounting for
the scenario. It might be possible that introducing a classifier
to predict the scenario or creating a different model for each
scenario could improve these results. Nonetheless, the model
provides a confidence estimate in the predictions that is quite
conservative, as seen in Table V. That is, if we set a confidence
threshold of, for example, 50%, then 97.85% of the predictions
are correct, a percentage that rises to over 99% in three out
of the five scenarios. These results are detailed in Table VI,
which reflects the metrics for identification in windows with a
confidence greater than 50%, representing 87.19% of the total
windows.

These results represent, to the best of our knowledge, the
first attempt to develop a cancelable identification method
using non-contact radar-based cardiac signals. Since no pre-
vious results exist for cancelable identification methods using
this type of signal, we have compared our results with those
obtained from similar studies using ECG signals. The rationale
for this comparison is grounded in recent findings demon-
strating that ECG signals can be accurately reconstructed
using wave radar technology [116], [117]. Some of these
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TABLE VI
METRICS FOR WINDOWS WITH PREDICTED CONFIDENCE BIGGER THAN 50%

Scenario Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) F1-score (%) Windows selected (%)

Apnea 90.28 15.22 6.85 84.78 89.10 84.30 72.73
Resting 99.17 1.23 0.72 98.77 99.28 98.92 92.07
TiltDown 99.08 0.88 1.07 99.12 98.93 98.98 91.85
TiltUp 94.02 8.50 6.66 91.50 93.34 91.46 71.10
Valsalva 99.05 1.12 0.82 98.88 99.18 99.00 93.45

All 97.85 2.06 1.99 97.94 98.01 97.95 87.19

comparative results are shown in Table VII, where the ”Perfor-
mance” column reflects results gathered from the manuscripts
of those studies. This table also includes the dataset used in
each study. The Physikalisch Technische Bundesanstalt (PTB)
Database provides high-resolution ECG recordings from a
Frank-lead vectorcardiogram and a standard 12-lead ECG,
collected under controlled conditions. The CYBHi Database
is designed for cardiac biometrics, offering ECG signals
sampled at 1 kHz with 12-bit resolution, recorded using dry
electrodes on palms or Electrolycras on fingers. The MIT-BIH
Arrhythmia Dataset features 48 two-channel recordings, each
30 minutes long, sampled at 360 Hz with 11-bit resolution,
covering both normal rhythms and complex arrhythmia. Each
of these datasets is affected by specific artifacts, such as
baseline wander from respiration and body movement in the
PTB and CYBHi databases, and electrode motion artifact
in the MIT-BIH Arrhythmia Dataset [118]. In the case of
[119], the authors mention the possible presence of power
line interference, baseline wander, and muscle artifacts. In our
dataset, RBM and respiration are the two main sources of
noise, although future studies could explore the possibility of
leveraging the patient’s respiration to enhance the identifica-
tion process. It is worth noting that in our study, we opted for
temporal train-test segmentation to better approximate real-
world usage scenarios, a step not always taken in all studies.
Using a random split approach would have resulted in very
similar windows between the train and test sets, potentially
contiguous, thereby improving all metrics.

Additionally, we found that feature extraction via Transfer
Learning yields satisfactory results. Among the pre-trained
networks we tested, ResNet50 emerged as the best performer.
However, better results can be achieved in this case by
extracting features using our custom-trained network, trained
exclusively on images from this dataset, as shown in Table II.
This enhancement does not significantly increase training time.
Subsequently, the results in this table are further improved
with the introduction of a cancellation method (GRP), which
generates cancelable templates by acting as a feature selector.
This selection can be more intense, streamlining computational
calculations and enhancing security, or less intense, resulting
in a less drastic reduction in the number of features in each
template. Our experiments did not observe superior perfor-
mance in any case, perhaps only some instability in the results
if the dimensionality reduction is strong.

With this identification system based on cancelable tem-
plates, we can ensure that the four properties mentioned in the
introduction are met. Firstly, the templates are unique to this

application since the system has its own method of template
generation. Moreover, reusability/revocability is guaranteed
due to the flexibility of GRP. In case one or several templates
are compromised, another projection matrix can be randomly
chosen to generate new and different templates. In such a
case, the model would also need to be retrained. The process
carried out with GRP also guarantees non-invertibility since it
involves projecting the data into a lower-dimensional subspace,
making the mapping between the original and transformed
spaces non-bijective and therefore lacking an inverse. Finally,
regarding performance, we can affirm that our model is not
computationally inefficient when compared to other biometric
identification models. On the contrary, GRP acts as a feature
selection tool that can reduce the number of features extracted
from each scalogram (Figure 4) without compromising results,
thereby facilitating good model performance.

A limitation of the present study lies in the number of
patients for which the identification method was tested—30
subjects. This limitation is shared by most studies working
with signals extracted via radar, and this sample size is,
in fact, larger than that of most studies to date. This is
due to the scarcity of available data for this type of signal,
which represents a significant bottleneck in the development of
related technologies. In [12], various studies on identification
using radar-based signals are summarized, five of which utilize
cardiac signals. These five studies report datasets containing
4, 10, 11, 20, and 78 participants, respectively (with the
latter dataset being private). The studies cited in the same
article that propose identification methods based on respiratory
signals extracted via radar include 3, 6, 6, 10, 10, and 20
participants. Therefore, although the present study does not
provide conclusive results regarding the applicability of the
method in a real-world identification scenario, it makes a
significant contribution to the field by offering evidence of
the feasibility of the proposed methods with a sample size
larger than most previous studies, while also incorporating
the innovations described in the Introduction. These results,
therefore, suggest the potential for implementing a secure
contactless identification system through the extraction of
cardiac signals using continuous-wave radar. On the other
hand, the recordings were conducted in a laboratory setting,
minimizing RBM. In real-world scenarios, the presence of
such movements could pose a challenge to the applicability
of this technique. However, some studies have already begun
exploring ways to mitigate the impact of these movements.
For example, in [74] Non-negative Matrix Factorization is
employed to reduce body movement interference in recordings
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TABLE VII
COMPARISON OF BIOMETRIC CANCELLATION TECHNIQUES AND THEIR PERFORMANCE.

Reference Year Type of
signal

Dataset Cancellation Method Other Techniques Performance

Chen et al. [120] 2017 ECG PTB Database (285 subjects) Subspace collapsing MUSIC algorithm with suppres-
sion and poll strategy Accuracy 97.58%

Wu et al. [9] 2018 ECG PTB Database Signal subspace collapsing Multiple signal classification
method Accuracy 95.23%

Kim et al. [10] 2019 ECG ECG-ID dataset

Compressive Sensing - Generalized
Likelihood Ratio Test (CS-GLRT),
random permutation-based revoca-
tion process

Self-guided ECG filtering, T-wave
shift model Accuracy 93.00%

Hammad et al. [121] 2019 ECG MIT-BIH arrhythmia dataset,
PTB Database, CYBHi dataset

Improved Bio-Hash and matrix op-
eration

Feed-Forward Neural Network for
identification

Equal Error Rate (EER)
14%

Sakr et al. [122] 2022 ECG ECG-ID dataset, PTB
Database

DNA and amino acid based tech-
nique

Transfer learning for feature ex-
traction, SVM

Accuracy 99.26% and
99.39%

El-Moneim et al.
[123] 2024 ECG ECG-ID dataset, MIT-BIH

dataset
Blind signal separation and
lightweight encryption

XOR operation with user-specific
pattern

Accuracy 99.96% and
99.96%

Our results 2024 Heartbeats
(radar) Erlangen Hospital [68] GRP Continuous-wave radar, CNN,

MLP

Accuracy 95.40%
(resting) and 91.20% (all
scenarios)

of premature infants in the neonatal intensive care unit. Other
studies addressing the reduction of such signal interferences
include [15] and [16].

Furthermore, this technique offers new possibilities for
application in various fields, always preserving user security
and privacy. For example, it could be used in continuous
monitoring of the cardiac system for health purposes, pro-
viding precise data for the diagnosis and management of
cardiovascular diseases, in identifying specific activities per-
formed by an individual or in assessing the level of stress
they are experiencing, offering valuable tools for personal
well-being and mental health management. Additionally, this
system could be integrated with other biometric modalities,
creating even more robust and secure multifactor identification
solutions.

VI. CONCLUSION

In this study, we developed a contactless identification
system based on heart signal detection using continuous-wave
radar. From this signal, by isolating the part corresponding
to the heart, we generated scalograms and extracted features
using a CNN. With these features, we generated a cancelable
template using GRP and then classified these templates with
an MLP. The results showed an accuracy of 91.20% on the
combined dataset of five scenarios and 95.40% when consid-
ering only the Resting scenario. The method also provides
a confidence measure in the predictions, which we can use
to increase our confidence in the outputs. For example, by
selecting only windows with a confidence greater than 50%,
we can predict the class of 87.19% of the windows with
an accuracy of 97.85%, percentages which increase notably
in three of the five scenarios present in the database. The
results presented in this research are very promising, and we
anticipate they might pave the way for new and innovative
contactless cancelable biometric systems, thereby enhancing
security and privacy, improving usability, and facilitating daily
identification processes for users. The primary limitation in
this area of research is the current scarcity of available data,
which hinders progress. Aside from this, the potential of this

radar-based biometric method could be comparable to other
more established methods such as ECG or face recognition.
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