
Cryptanalysis of a Novel Authentication
Protocol Conforming to EPC-C1G2 Standard

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M. Estevez-Tapiador,
and Arturo Ribagorda

Computer Science Department, Carlos III University of Madrid
{pperis, jcesar, jestevez, arturo}@inf.uc3m.es

Abstract. In 2006, the EPC Class-1 Generation-2 (EPC-C1G2) stan-
dard was ratified both by EPCglobal and ISO. This standard can be
considered as an “universal” specification for low-cost RFID tags. Al-
though it represents a great advance for the establishing of RFID tech-
nology, it does not pay due attention to security and, as a consequence,
its security level is indeed very low. In 2007, Chien et al. published a
mutual authentication protocol conforming to EPC-C1G2 which tried to
correct all its security shortcomings. In this article, we point out various
major security flaws in Chien et al.’s proposal. We show that none of the
protocol objectives are met. Unequivocal identification of tagged items
is not guaranteed due to birthday attacks. Furthermore, an attacker can
impersonate not only legitimate tags, but also the back-end database. Lo-
cation privacy is easily jeopardized by a straightforward tracking attack.
Finally, we show how a successful auto-desynchronization (DoS attack)
can be accomplished in the back-end database despite the security mea-
sures taken against it. At the core of all these vulnerabilities lays the
abuse of a CRC function.
Keywords— RFID, EPC-C1G2, security, authentication, cryptanalysis

1 Introduction

One of the most relevant standards connected to RFID technology is the EPC-
global Class-1 Gen-2 RFID specification (EPC-C1G2) [6]. EPC-C1G2 tags are
passive, so they receive their energy from reader’s RF waveform. The very con-
strained computational and storage capabilities dictates that these tags can not
afford the use of traditional cryptographic primitives. Following the standard,
tags only support on-chip a 16-bit Pseudo-Random Number Generator (PRNG)
and a 16-bit Cyclic Redundancy Code (CRC). Tag memory is insecure, and sus-
ceptible to physical attacks. Two 32-bit kill and access passwords are used to
permanently disable the tag and to trigger it into secure mode, respectively.

Despite of the great advance that EPC-C1G2 represents in terms of communi-
cation compatibility and performance between tags, and the major implications
this could have to ease the widespread use of this technology, the security level of
this standard is extremely weak. The two most relevant operations for managing
tag populations are inventory and access. These two operations present serious
security flaws, as described below:

– Inventory command: the private information stored in the tag is compro-
mised by any attacker with access to the radio channel, because the EPC
is transmitted in plain text. Additionally, an adversary can easily imperson-
ate a legitimate tag: the attacker can obtain the EPC of any tag by simply
eavesdropping the air channel, as this EPC will be emitted by the tag when
the reader sends any request. After obtaining this value, the attacker can
use it to impersonate the tag. Finally, as tags transmit always a fixed EPC
value, this could be associated with its holder allowing an easy tracking of
user’s movements and behaviors.

– Access command: the security of the access command is extremely weak, so
performing a passive attack is very simple. An attacker listening the back-
ward and forward channel (a very realistic assumption when using the air
channel) can pick up the random numbers sent by the tag. Next, the attacker
will be able to decrypt the ciphertexts sent by the reader by performing an
xor (addition modulo 2) with the previous eavesdropped random numbers.
So the plaintexts or PINs can be obtained by this quite simple mechanism,
which constitutes an important security pitfall.

In spite of the serious security failures of EPC-C1G2 (the case of the In-
ventory and Access commands described above are only two examples), this
standard could already be considered a great success after having been adopted
by many RFID manufacturers [1]. This is the reason why efforts to develop new
security features (i.e. authentication or key exchange protocols) compliant with
the EPC-C1G2 standard have blossomed lately [3, 9, 10].

2 Chien’s et al. Protocol

In [5], Chien et al. propose a mutual authentication protocol for improving not
only the security of EPC-C1G2 but also that of all the previous proposals com-
pliant with this standard. Their scheme consists on two phases:

Initialization phase For each tag denoted as Ti, the server randomly selects
an initial authentication key Ki0 and an initial access key Pi0 . These two values,
joined with the EPC (EPCi) are stored in the tag. The authentication and
access key will be updated after each successful authentication. For each tag,
the server S (back-end database) maintains a record of six values: (1) EPCi;
(2) the old authentication key for this tag (Kold), which is initially set to Ki0 ;
(3) Pold denotes the old access key for this tag, which is initially set to Pi0 ;
(4) Knew denotes the new authentication key, which is initially set to Ki0 ; (5)
Pnew denotes the new authentication key, which is initially set to Pi0 ; (6) Data
denotes all the information about the tagged objet.

The (n+1) authentication phase

R → Ti: N1

The reader sends a random nonce N1 as a challenge to the tag.

Ti → R → S: M1, N1, N2

The tag generates a random number N2, computes M1 =
CRC(EPCi||N1||N2) ⊕ Kin

, and sends the value back to the
reader, which will forward these values to the server.
The server interactively selects an entry
(EPCi,Kold,Knew, Pold, Pnew, Data) from its database, com-
putes Iold = M1⊕Kold and Inew = M1⊕Knew, and checks wether
any of these two equations hold Iold = CRC(EPCi||N1||N2)
Inew = CRC(EPCi||N1||N2). This is designed to be a way of
avoiding desynchronization attacks. The process is repeated until
a match is found in the database, thus implying a successful
authentication of the tag. If no match is found, a failure message
is sent to the reader, and the authentication process is stopped.

S → R: M2, Data
After a successful authentication, the server computes M2 =
CRC(EPCi||N2) ⊕ Pold or M2 = CRC(EPCi||N2) ⊕ Pnew, de-
pending on which value (Kold, Knew) satisfies the equation in
the previous step. It also updates Kold = Knew, Pold = Pnew,
Knew = PRNG(Knew) and Pnew = PRNG(Pnew). The server
sends M2, Data to the reader.

R → Ti: M2

Upon receiving M2, the tag verifies whether the equation M2 ⊕
Pin

= CRC(EPCi||N2) holds. If so, it updates its keys Kin+1 =
PRNG(Kin) and Pin+1 = PRNG(Pin).

3 Cyclic Redundancy Codes - CRC’s

A Cyclic Redundancy Code (CRC) is a checksum algorithm that can be used
to detect transmission errors (typically one or two bit flips, or bursts) in a very
efficient way. CRCs operate by interpreting input binary sequences as polyno-
mial coefficients, that they divide by a prefixed polynomial in order to obtain a
remainder, which, in its binary expression, constitutes the crc value.

CRCs are completely linear, so they shouldn’t be use in cryptographic ap-
plications, as they cannot detect malicious changes by a knowledgeable attacker
[2, 12, 13]. Instead, cryptographic primitives such as hash functions or message
authentication codes should be used for this purpose.

So computing a crc value for a given binary stream is essentially dividing
the polynomial associated with this stream by another fixed polynomial (that
depends on the particular CRC implementation) and computing a reminder. The
stream should be multiplied by xN (being N the degree of the crc polynomial)
prior to division. That is, computing the crc of a polynomial i(x) is basically
finding a remainder r(x) so that,

i(x) · xN = d(x) · p(x) + r(x) with |r(x)| < |p(x)| (1)

3.1 CRCs properties

Due to their linearity, CRCs have some properties that, from the security point
of view, one can label as bad. In fact, we will show that one of these “bad”
properties (derived from their linear structure) will be enough to successfully
attack Chien et al.’s mutual authentication protocol in various ways.

Theorem 1. For any CRC (independently of its generator polynomial) and for
any values a, b, c, and d ∈ F2[x], it holds:

CRC(a‖b)⊕ CRC(c‖d) = CRC(a⊕ c‖b⊕ d) (2)

Proof. ¿From the definition in Equation 1 above, one can write:

CRC(a‖b) = (a · xN ⊕ b) · xN ⊕ d1(x) · p(x) (3)

CRC(c‖d) = (c · xN ⊕ d) · xN ⊕ d2(x) · p(x) (4)

for certain polynomials d1(x) and d2(x) ∈ F2[x]. Substituting these values in
the left side of Equation 2 we obtain the following:

(a · xN ⊕ b) · xN ⊕ d1(x) · p(x)⊕ (c · xN ⊕ d) · xN ⊕ d2(x)· (x) (5)

rearranging terms in this expression we get:

((a⊕ c) · xN ⊕ (b⊕ d)) · xN ⊕ (d1(x)⊕ d2(x)) · p(x) (6)

that is the corresponding expression for CRC(a ⊕ c‖b ⊕ d) (analogously to
Equation 3 and 4). ut

Corollary 1. In particular, if in Equation 2 we have a = c, then,

CRC(a‖b)⊕ CRC(a‖d) = CRC(a⊕ a‖b⊕ d) = CRC(0‖b⊕ d) =
= CRC(b⊕ d) (7)

because 0 · xN ≡ 0 · p(x)

This is the property we will take advantage of for attacking Chien et al.’s
protocol (and, for that matter, any other protocol relying in the use of a CRC as
a means of concealing secrets). It is important to point out this holds for every
CRC implementation, independently of its length and crc generator polynomial
(CRC-8, CRC-16, CRC-32, CRC-64, etc).

4 Vulnerabilities of Chien’s Protocol

In this section we will analyze the most important vulnerabilities of Chien et
al.’s protocol.

4.1 Unequivocal identification

The use of RFID tags offers several advantages over barcodes: data can be read
automatically, without line of sight, and through a non-conducting material such
as cardboard or paper, at a rate of hundreds per second, and from a distance of
several meters. But there is a fundamental difference between a barcode technol-
ogy and RFID. Barcodes use Universal Product Codes (UPC) to identify items.
RFID technology replaces UPC with the Electronic Product Code (EPC) that
allows the unequivocal identification of tagged items.

The Tag Data Specification [7] does not provide any specific guidance for
using EPCs in UHF Class-1 Generation-2 tags. Due to this fact, in the following
we assume that EPCs will be managed in the same way as they were in the
EPC-C1G1 standard. So, the EPC is composed of the following fields (identical
to those of the General Identifier, GID-96)

– Header is set to the fixed hexadecimal value 0x35 (8-bits).
– General manager identifies a company, manager or organization (28-bits).
– Object class is used by an EPC managing entity to identify class or “type”

of thing (24-bits).
– Serial number is unique within each object class (36-bits).

Static identifiers (EPC-96) represent valuable information that should be
transmitted on the channel guaranteeing its confidentiality and, at the same
time, avoiding the tracking of its holders. To solve these two connected prob-
lems, researchers have proposed many pseudonym-based solutions. Generally
speaking, a pseudonym is a fictitious name that disguises the real EPC-96 value,
only allowing authorized parties to link it to its real value. However, just by using
pseudonyms only privacy could be guaranteed. For assuring a suitable protection
against tracking (location privacy), it is necessary to update pseudonyms in an
unpredictable way each time the tag is interrogated. The most commonly used
solution in the literature for pseudonym updating consists on repeatedly apply-
ing a hash function to the static identifier (i.e pseudonymi = hashi(EPC)).
However, hash functions have not been ratified by the EPC-C1G2 specification,
due to the inherent computational limitations of low-cost RFID tags. As we
saw in Section 1, tags conforming to EPC-C1G2 only support on-board a 16-bit
Pseudo-Random Number Generator (PRNG) and a 16-bit Cyclic Redundancy
Code (CRC) checksum.

In the inventory command, as described in EPC-C1G2 specification, tags
transmit its EPC in plain text. Chien et al. propose that tags transmit M1 =
CRC(EPC||n1||n2) instead, where nonce n1 is generated by the reader and
nonce n2 is generated by the tag. Message M1, concatenated with these two
nonces n1 and n2 is sent to the back-end database. This scheme presents a
serious security failure, as described in the following.

An EPC has the first 8-bits of the header fixed, while the remainder 88-bits
are variable. So, there are 288 possible identifiers. However, tags support on-
board a 16-bit CRC (ISO/IEC 13239, p(x)=x16 +x12 +x5 +1, Preset=0xFFFF,
Residue=0x1D0F). So, the 288 possible EPC values collapse in only 216 values

(a) Fig. 1.A (b) Fig. 1.B

Fig. 1: Non Unequivocal Identification and Failed Authentication

when the CRC is applied to the EPC (M1 = CRC(EPC ||n1||n2)).

Weakness 1: Chien et al’s protocol does not guarantee the unequivocal
identification of tagged items, which is an essential property in authen-
tication protocols.

We have simulated a population of N tags. For each tag the values of EPC,
K, and P were randomly initialized. These values will be stored both in the tag
and at the back-end database. Upon initialization, we simulate the reading of
these N tags. For each reading, the following process is repeated:

(1) Reading of tagx

(2) M1 = CRC(EPCx || n1 || n2) ⊕ Kx

(3) Send M1, n1, n2 to the back-end database

(4) for(x’==1,x’< N,x’++)

M1’= CRC(EPCx’ || n1 || n2) ⊕ Kx’
if ((x’ != x) && (M1’ == M1)) collision++;

(5) if collision>0 "Failed unequivocal identification"

The above process is repeated T times (T = 10000) in order to obtain an
estimation of the non-unequivocal identification probability (PNUI). We have
simulated the above experiment with eight different values (N = 118, 226, 301,
397, 549, 626, 769, 800). The values obtained are summarized in Fig. 1A, and
perfectly fit with the values obtained for the birthday paradox with a group of
N tags and d = 216 boxes:

p(N ; d) =
{

1−
∏N−1

k=1 (1− k
d) N ≤ d

1 N > d
(8)

These results are hardly surprising, since each time a tag (tagx) is read, we
search if the equality M1 = CRC(EPCx||n1||n2)⊕Kx == CRC(EPCx′ ||n1||n2)
⊕Kx′ = M ′

1 holds for x′ 6= x. As specified in EPC-C1G2, the CRC is 16-bits
length. The kill and access passwords are 32-bits in length. However, only one half
(MSB or LSB) is included in each message. Chien et al. state neither the length of
the authentication key (kx) nor the length of the access key (Px). From the above,
we can assume that these two keys are 16-bit length. Moreover, the keys are
xored with a CRC of 16-bit length, so the previous assumption seems consistent
with their usage. Finally, if we assume that the CRC() and Ki are uniformly
distributed (which may well not be the case, specially in the case of CRCs), the
probability that at least two of N randomly selected tags have the same index
(M1 = M ′

1), is exactly that given by the birthday paradox with N individuals and
d = 216 boxes. Therefore, we have pointed out that tags can not be unequivocally
identified under these conditions. For example, with a population of more than
300 tags, we will have at least one non-unequivocal tag identification with a
probability over 0.5 (PNUI > 0.5). Similarly, even for a relatively low number
of tags (600) the probability of non-unequivocal identification rises to more that
an 90% (see Fig. 1.A).

Finally, even if we relax a lot the requirements of our RFID system for even
allowing the existence of collisions in the identification process (still if the colli-
sions probability is low, this seems like a very unusual decision), Chien’s protocol
could present serious operational problems as the number of tags increase, be-
cause the probability of failed authentication rises quickly. For verifying that, we
carried out a similar experiment to that described above, although in this case
each time a tag is read the absolute number of collisions in the database is com-
puted. The experiment has been simulated with six different values for the tag
population (N = 27, 210, 212, 214, 215, 216), and repeated T times (T = 10000).
The obtained results are displayed in Fig. 1B. So, the probability of failed iden-
tifications in a population of N tags, is described by the following equation:

PFI(N) =
{

2log2(N)−16 N ≤ 216

1 N > 216 (9)

4.2 Tag Impersonation

Each tag shares with the reader some private information: EPC (EPCx), au-
thentication key (Kx) and the access key (Px). This information is employed to
build messages M1 and M2 in order to proof its authenticity. However, a passive
attacker eavesdropping the channel (backward and forward channel) will be able
to supplant a legitimate tag as described bellow:

Weakness 2: Chien et al’s protocol does not guarantee the non-
impersonation of legitimate tags.

Proof: In order to accomplish this attack, and adversary only needs to listen
an iteration between the reader and the legitimate tag.

(1) R → T : n1

(2) T → R : M1 = CRC(EPCx||n1||n2)⊕Kx, n2

At this point, the attacker isolates the legitimate tag, preventing its nor-
mal operation. He has the following information: M1, n1, and n2. With this,
the attacker should be able to build message M ′

1 = CRC(EPC||n1′||n2′) when
queried by the reader. Although the attacker does not know the private informa-
tion stored in the tag (EPC, Kx, and Px), message M ′

1 can be easily computed
as described below. Corollary 1 states:

CRC(a||b)⊕ CRC(a||d) = CRC(b⊕ d) (10)

As this holds for every a, b, d ∈ F2[x], if b and d are the concatenation of
some other variables (b = b1||b2, d = d1||d2), the above expression also holds
and can be rewritten as,

CRC(a‖b)⊕ CRC(a‖d) = CRC(a‖b1‖b2)⊕ CRC(a‖d1‖d2) =
CRC((b1‖b2)⊕ (d1‖d2)) = CRC(b1⊕ d1‖b2⊕ d2) (11)

So the difference between the known value M1 and the new challenge M ′
1 is

exactly M1⊕M ′
1 = CRC(EPC||n1||n2)⊕CRC(EPC||n′1||n′2) and, substituting

in Equation 11, we got:

CRC(EPC||n1||n2)⊕ CRC(EPC||n′1||n′2) = CRC(n1 ⊕ n′1||n2 ⊕ n′2) (12)

Therefore, message M ′
1 can be obtained by performing an xor between mes-

sage M1 and the easily computable value CRC(n1 ⊕ n′1||n2 ⊕ n′2) (because all
nonces are transmitted in clear and the CRC function is public). Therefore,
the identity of a legitimate tag could be easily impersonated. An ANSI-C code
with the implementation of this attack is available in http://163.117.149.208/
chien/attack2.c.

4.3 Back-end Database Impersonation

In Section 4.2 we focus on message M1 sent by the tag when queried by the
reader. In this case we concentrate on message M2, generated by the back-end
database. The attacker should be able to generate this message in order to im-
personate a legitimate back-end database.

Weakness 3: Chien et al.’s protocol is vulnerable to back-end database
impersonation.

Proof: For the attacker, it is enough to listen an iteration between a legiti-
mate tag and a reader-database in order to exploit this vulnerability:

(1) R → T : n1

(2) T → R : M1 = CRC(EPCx||n1||n2)⊕Kx, n2

(3) R → Database : M1 , n1, n2

(4) Database → R : M2 = CRC(EPCx||n2)⊕ Px
(5) R → T : M2

The attacker has to block or disrupt radio channel to obstruct the correct
reception of message 5. The objective of this is to prevent the legitimate tag
from updating its keys. At this moment, the attacker could supplant the back-
end database without knowing all its private information (the six fields described
in Section 2). In the next tag reading, the database will receive M ′

1, n′1, n′2. The
fraudulent database has to compute the message M ′

2. But from Corollary 1, the
following expression can be derived:

M2 ⊕M ′
2 = CRC(EPC||n2)⊕ CRC(EPC||n2′)

CRC(EPC||n2)⊕ CRC(EPC||n2′) = CRC(n2⊕ n2′) (13)

So, message M ′
2 can be obtained by means of an xor between the previous M2

message listened in the air channel and the easily computable value CRC(n2 ⊕
n′2). Message M ′

2 will be sent to the tag, which will authenticate the fraudulent
back-end database and update its keys. An ANSI-C code with the implementa-
tion of this attack is available in http://163.117.149.208/chien/attack3.c.

4.4 Tracking or private location

Protection against tracking is not guaranteed when tags answer reader queries
with the same identifier. In Chien et al.’s protocol, nonces n1 and n2 are em-
ployed in each session to ensure freshness. With this, it seems that tag’s private
location is assured, which is not the case as explained bellow:

Weakness 4: Chien et al.’s protocol does not guarantee the location pri-
vacy of tags

Proof: The success of this attack depends on preventing the tag key updating.
Moreover, if the population of tags is greater that 216, the normal operation of
the protocol will hamper the key update operation (see Section 4.1). In the
back-end database a pair of keys (new, old) are stored for each tag key. Chien
et al. claim that the storage of these two key frustrates DoS attacks. To provide
this property, the fact that a tag may use some times the same key (when
message M2 is incorrectly received) to compute message M1 is considered as
a normal operation. In fact, Chien does not specify the maximum number of
times that a tag can be authenticated with the same authentication key. Imagine
that the reader captures two non-consecutive iterations, upon non-updating key
condition (an ANSI-C code with the implementation of this attack is available
in http://163.117.149.208/chien/attack4.c):

(1) R → T : n1
(2) T → R : M1 = CRC(EPCx||n1||n2)⊕Kn

x , n2

....
(1) R → T : n1′

(2) T → R : M ′
1 = CRC(EPCx||n′

1||n′
2)⊕Kn

x , n′
2

....

Now, the attacker computes the xor of messages M1 and M ′
1. If messages M1

and M ′
1 came from the same tag, the authentication key Kn

x is canceled when
the xor is computed. By means of Equation 11, the attacker can verify if answers
arise from the same tag:

M1 ⊕M ′
1 = CRC(n1 ⊕ n′1||n2 ⊕ n′2) (14)

A similar attack can be accomplished using messages sent by the database
(M2). Suppose that a croocked reader interrogates a tag: reader sends message
M1 to the database. The database authenticates the tag, and sends back mes-
sage M2. M2 is stored by the reader, and a wrong M2 message is sent to the tag
avoiding its key updating. Then, the above process is repeated obtaining mes-
sages M ′

1, and M ′
2 with nonces n′1 and n′2. At this time, the attacker computes

the xor of messages M2 and M ′
2 to check if they came from the same tag. From

Corollary 1, the following equality should hold:

M2 ⊕M ′
2 = CRC(n2 ⊕ n′2) (15)

4.5 Back-end database auto-desynchronization

To defend against a DoS attack, Chien et al. propose that the back-end database
maintains a pair of keys (new, old) for each tag key. This assumption allows the
server to authenticate tags and re-synchronize these each time they suffer a
DoS attack. However, the normal operation of the protocol results in a syn-
chronization loss between the database and the tags due to the non-unequivocal
identification property described in Section 4.1.

Weakness 5: Chien et al.’s protocol is vulnerable to auto-
desynchronization attacks.

We have simulated a population of N tags. For each tag the EPC, K, and
P values are randomly initialized. These values will be stored both in the tag
and in the back-end database. Upon initialization, we simulate the reading of N
tags. For each reading, the following process is repeated:

(1) Reading of tagx

(2) M = CRC(EPCx || n1 || n2) ⊕ Kx

Fig. 2: Auto-desynchronization Probability

(3) Send M, n1, n2 to the back-end database

(4) while ((x’<N)&&(output==0))

{M’= CRC(EPCx’ || n1 || n2) ⊕ Kx’
if (M’ == M) autodesyn[x’]++; output=1

x’++}

Upon the reading of the N tags, we reckon the number of times that auto-
desynchronization occurred. After the reading of a tag, the authentication and
access key are updated both in the database and in the tag. An additionally
wrong update, during the reading of a different tag, will cause a synchronization
loss for that tag. Therefore, the number of tags whose keys have been updated
two or more times constitute the number of de-synchronized tags. So, the prob-
ability of auto-desynchronization (PADS) can be defined as:

PADS =
1
N

N∑
x=1

(autodesyn[x]− 1) (16)

The above process is repeated T times (T = 1000) in order to obtain an
estimation of the PADS . We have simulated the experiment with different pop-
ulation values (N=214, 215, 216 ... 218), as displayed in Fig. 2. The results point
out that if we have a population of N ≥ 217 tags, the probability of auto-
desynchronization is greater than 0.5. This probability increases to 0.93 if the
population is N ≥ 218.

5 Conclusions

Due to the security faults both of EPC-C1G2 and of the previous proposals
conforming to this standard, in 2007 Chien et al. proposed a new mutual au-
thentication protocol that tried to solve these problems. After briefly presenting
Chien scheme, the security of this protocol has been analyzed, showing some im-
portant security failures: non-unequivocal-identification, identity impersonation

(both of tags and, more importantly, of the back-end database), tracking, and
auto-desynchronization.

We have also shown that all security weaknesses are related with the abusive
use of the CRC-16 included in the EPC-C1G2 standard. Some of them (non-
unequivocal identification and autodesynchronization) could have been solved
simply by using larger CRCs (well above the 16-bits proposed in the standard).
Settling the rest of the security problems highlighted in this article is much
harder, because they are due to the linear properties of CRCs, and will not be
solved by changing the CRC length or polynomial. Instead, as classical cryp-
tographic primitives are not supported in low-cost RFID tags, new lightweight
cryptographic primitives should be used, taking into account the severe com-
putational and storage limitations of these devices. Indeed, CRCs are designed
to detect random errors in messages and not to be resilient against malicious
attacks by knowledgeable users. This design pitfall is, however, not at all new:
for example, the disaster of SSH v1.5 [8, 11] and WEP [4] protocols were in great
part due to a similar CRC abuse.

References

1. Philips and Texas Instruments join forces to accelerate EPC Gen-2 RFID deploy-
ment. http://www.nxp.com/news/content/file1171.html, 2005.

2. Anarchriz. CRC and how to reverse it.
http://www.woodmann.com/fravia/crctut1.htm, 1999.

3. D. Bailey and A. Juels. Shoehorning security into the EPC standard. Manuscript
in submission, 2006.

4. N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications: the
insecurity of 802.11. In Proc. of MobiCom’01, ACM, pages 180–189, 2001.

5. H.-Y. Chien and C.-H. Chen. Mutual authentication protocol for RFID conform-
ing to EPC Class-1 Generation-2 standards. Computer Standards & Interfaces,
Elsevier Science Publishers, 29(2):254–259, February 2007.

6. Class-1 Generation-2 UHF air interface protocol standard Version 1.0.9: “Gen-2”.
http://www.epcglobalinc.org/, 2005.

7. EPC Generation-1 tag data standards Ver. 1.1. http://www.epcglobalinc.org/,
2005.

8. A. Futoransky and E. Kargieman. An attack on CRC-32 in-
tegrity checks of encrypted channels using CBC and CFB modes.
http://www.coresecurity.com/files/attachments/CRC32.pdf, 1999.

9. A. Juels. Strengthening EPC tags against cloning. Manuscript, 2005.
10. D. Nguyen Duc, J. Park, H. Lee, and K. Kim. Enhancing security of EPCglobal

Gen-2 RFID tag against traceability and cloning. In Proc. of Symposium on Cryp-
tography and Information Security, 2006.

11. N. Provos and P. Honeyman. Scanssh - scanning the internet for ssh servers. In
In Proc. of USENIX’01, 2001.

12. M. Stigge, H. Pltz, W. Mller, and J.-P. Redlich. Reversing CRC theory and
practice. Technical Report SAR-PR-2006-05, Humboldt-Universitat Berlin, 2006.

13. B. Westerbaan. Reversing CRC. http://blog.w-
nz.com/archives/2005/07/15/reversing-crc/, 2005.

