
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016 91

A New TRNG Based on Coherent Sampling
With Self-Timed Rings

Honorio Martin, Pedro Peris-Lopez, Juan E. Tapiador, and Enrique San Millan

Abstract—Random numbers play a key role in applica-
tions such as industrial simulations, laboratory experimen-
tation, computer games, and engineering problem solving.
The design of new true random generators (TRNGs) has
attracted the attention of the research community for many
years. Designs with little hardware requirements and high
throughput are demanded by new and powerful applica-
tions. In this paper, we introduce the design of a novel
TRNG based on the coherent sampling (CS) phenomenon.
Contrary to most designs based on this phenomenon,
ours uses self-timed rings (STRs) instead of the com-
monly employed ring oscillators (ROs). Our design has two
key advantages over existing proposals based on CS. It
does not depend on the FPGA vendor used and does not
need manual placement and routing in the manufacturing
process, resulting in a highly portable generator. Our exper-
iments show that the TRNG offers a very high throughput
with a moderate cost in hardware. The results obtained
with ENT, DIEHARD, and National Institute of Standards and
Technology (NIST) statistical test suites evidence that the
output bitstream behaves as a truly random variable.

Index Terms—Coherent sampling (CS), FPGAs, self-
timed ring (STR), true random generator (TRNG).

I. INTRODUCTION

S OURCES of random numbers are always in demand.
They play a key role in computer games, problem solv-

ing techniques in engineering, industrial simulations, security
primitives and protocols, and a variety of other applications.
In many cases, the quality of the randomness must be as high
as possible, e.g., when used in security applications to gener-
ate keys, nonces, session identifiers, etc., while in others it is
also required a very high throughput in the generation process.
In this regard, hardware-based pseudo and true random number
generators [pseudo-random number generator (PRNG) and true
random generator (TRNG), respectively] are very appealing

Manuscript received August 27, 2014; revised May 29, 2015 and
August 28, 2015; accepted October 27, 2015. Date of publication
November 20, 2015; date of current version February 02, 2016.
This work was supported in part by the Ministerio de Economia y
Competitividad (MINECO), Security and Privacy in the Internet of You
(SPINY), under Grant TIN2013-46469-R, and in part by the Comunidad
de Madrid (CAM), Cybersecurity, Data, and Risks (CIBERDINE), under
Grant S2013/ICE-3095. Paper no. TII-15-0310.

H. Martin and E. S. Millan are with Department of Electronics
Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain
(e-mail: hmartin@ing.uc3m.es; quique@ing.uc3m.es).

P. Peris-Lopeze and J. E. Tapiador are with the Computer Security
Laboratory, Department of Computer Science, Universidad Carlos
III de Madrid, 28911 Madrid, Spain (e-mail: pperis@inf.uc3m.es;
jestevez@inf.uc3m.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2015.2502183

because of their superior perfomance when compared with
software implementations [1]–[3].

Motivated by this, many researchers have pointed out the
convenience of using field programmable gate arrays (FPGAs)
as TRNG platforms due to their low cost and versatility [4]–
[6]. However, FPGAs offer a resource-constrained environment
(fixed logic blocks) that does not include analog blocks, which
are frequently employed to generate very entropic outputs.
Thus, the typical phenomena used in the generation of random-
ness in FPGAs are metastability and jitter [7], [8]. Since FPGAs
are initially designed and implemented to reduce their random
behavior, it is considerably more challenging to implement a
TRNG in an FPGA than in other digital devices.

From the implementation point of view, a TRNG should
not be technology dependant. For instance, in [9] it is pre-
sented a TRNG that exploits the technique of coherent sampling
(CS) and uses an analog phase-locked loop (PLL) to obtain a
fine control over the clock signal. In particular, the proposed
TRNG is implemented in an Altera FPGA, which includes a
PLL. Unfortunately, this design is not portable to the FPGAs
of other important manufacturers of the sector, e.g., such as
the ones produced by Xilinx, whose FPGAs mainly use delay-
locked loops (DLLs) instead of PLLs. Apart from being tech-
nological independent, proposed designs should not be device
dependant. For example, Kohlbrenner and Gaj present in [10]
a TRNG that uses ring oscillators (ROs) and takes advantage
of the CS technique. The design consists of two independent
and identically configured ROs with similar but not identical
frequency. A sampling circuit uses one clock signal to sam-
ple the other clock signal. Although the design works well
theoretically, Kohlbrenner and Gaj show how not only there
is a great variation between the RO frequencies in the same
FPGA (7%) but also between different FPGAs. In other words,
the design depends so much on the used device that it has
to be manually tuned (placement and routing) for each FPGA
implementation.

To the best of our knowledge, one of the first simple and
portable designs of a TRNG suitable for different FPGAs was
presented by Sunar et al. in [11]. Nevertheless, this design was
rapidly discarded since it suffers from implementation prob-
lems, mostly related to the number of signals handled by the
XOR-tree. Moreover, the quality of the raw signal is rather poor
and needs postprocessing. In [12], Wold and Tan present an
enhanced design based on Sunar et al.’s, which attempt to solve
its implementation problems while avoiding the need of a post-
processing stage. This enhanced version proposes a reduction
in the number of rings that, as reported in [13], cause the
loss of entropy. However, such a lack of entropy is masked by

1551-3203 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



92 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016

the pseudorandomness caused by XOR-ing clock signals hav-
ing different frequencies. In addition, these two designs were
successfully attacked in [14] and [15] exploiting the use of
ROs and their vulnerabilities to frequency injection, in which
the ROs are locked to an injected frequency and the jitter
phenomena as a source of randomness is neutralized.

More recently, inspired by Sunar et al.’s design, Cherkaoui
et al. [16] have presented a new design in which the ROs are
replaced by a self-timed ring (STR). An STR is a multiphase
generator that can maintain constant phase difference between
the different outputs. Therefore, this construction is resistant
to the common vulnerabilities used to attack TRNGs based on
ROs. Cherkaoui et al.’s TRNG seems to be a secure design (no
attack has been published yet), but the design consumes a sub-
stantial amount of resources in terms of power and circuit area.
This renders it unsuitable for constrained devices. More specif-
ically, the STR generates 63 signals that are sampled and finally
passed through an XOR tree, generating a high activity and,
correspondingly, having a high power consumption. Moreover,
the hardware requirements are superior to the ones that can be
afforded in most constrained devices.

In this paper, we present a new TRNG based on the CS tech-
nique. On the one hand, the design takes advantage of some key
STR features, which help us to solve the implementation prob-
lems (mainly the device dependence) suffered by Kohlbrenner
and Gaj’s design [10], while simultaneously avoiding the vul-
nerabilities linked to the use of ROs. On the other hand, the
proposed design is very efficient in hardware, which makes
it suitable for devices with limited capabilities, and offers a
relatively high throughput.

This paper is organized as follows. In Section II, we describe
the CS technique. We explain the phenomenon and the ran-
domness extraction technique. An overview of STRs and their
operation principles is presented in Section III. In Section IV,
our proposal is presented together with some implementation
considerations needed. The experimental results, both about the
randomness quality and hardware requirements, are presented
in Section V, together with a comparison between our proposal
and the most relevant designs. Finally, Section VI concludes the
paper and summarizes our main contributions.

II. COHERENT SAMPLING

In this section, we first introduce the principles of CS. After
that, we present the main TRNG proposals that exploit this
technique.

A. Background

CS is a well-known technique to sample periodic signals at
finer time intervals. CS refers to an integer number of cycles
that fits into a predefined sampling window. Mathematically,
this can be expressed as

fin
fsample

=
Ncyc

Nsamples
(1)

where fin is the sampled signal (S1) frequency, fsample is the
sampling signal (S2) frequency, Ncyc is the number of cycles of
the sampled signal, and Nsamples is the number of samples.

Fig. 1. General architecture of a TRNG based on CS.

If Ncyc and Nsamples are high and coprimes, the repetition
period of samples will be maximum, i.e., we will have the
highest resolution of the sampled signal. This is an interesting
feature because if the number of periods (frequencies) is con-
stant for ideal sources of S1 and S2, in physical systems where
these clock signals contain jitter, this number will be random
because of the Gaussian random component contained in the
jitter.

The general architecture of a TRNG using CS is depicted in
Fig. 1. The signal S1 would be sampled by the signal S2, gen-
erating a digitized analog signal known as “das.” If the quality
of the raw output is not high enough, a postprocessing stage is
added to guarantee a uniform output. A mathematical model of
physical RNGs based on CS can be found in [17].

B. TRNGs Based on CS

The first time, to the best of our knowledge, that CS was
used in an FPGA to generate random numbers was in [9]. In
that work, Fischer and Drutarovsky used a PLL embedded in
an Altera FPGA to guarantee the relation between Ncyc and
Nsamples. As explained in Section I, the main drawback of
this proposal is that the TRNG is not portable to other FPGA
vendors. Besides, PLLs are not supported in all FPGAs.

In [10], Kohlbrenner and Gaj replaced PLLs by ROs with the
aim of obtaining a portable design for FPGAs from different
vendors. The RO frequencies are selected to be close but not
identical. The RO outputs are connected to a sampler circuit
that generates a stream of 0’s and 1’s. The length of this stream
is counted module 2 to generate a random bit. The weakest
point of this design is that it requires a very complicated manual
placement and routing process to finely set the ring frequencies.
According to [10], this is a consequence of the high variation
(up to 7%) between the RO frequencies in the same FPGA. To
overcome such a sensitivity to placement, the authors suggest a
design with four ROs that are sampled by a fifth one.

In [18], Cret et al. take up the basic idea of using only
two ROs. In this design, the authors introduce a multiplexer to
alternate the sampling signal. They claim that the placement
sensitivity is overcome using a parametrizable postprocessing.
The main weakness of this TRNG is that the quality of the
raw output, without the postprocessing stage, is really poor. In
addition, Cret et al. present the cycle lengths of the signal gen-
erated in the sampler and its distribution is not an evidence of
the claimed randomness—which is actually far away from a
uniform distribution.

Finally, in [19], the authors present three designs based on
different clock generators for different FPGA models. More
precisely, the generators are RO–RO, RO–PLL (for Altera
FPGAs), and RO–DFS (for Xilinx FPGAs). Apart from the



MARTIN et al.: NEW TRNG BASED ON CS WITH STR 93

Fig. 2. Structure and truth table of an STR stage.

Fig. 3. STR structure.

technology dependency, the pair RO–RO cannot be fully auto-
mated since its design needs manual placement and routing.
Finally, it is worth mentioning that the authors introduce the
interesting idea of generating one random bit per half period by
using mutual sampling.

III. SELF-TIMED RINGS

STRs are a well-known structure to generate clock sig-
nals in digital devices. An STR implements an asynchronous
handshake protocol that assures an even distribution of events
through the different stages. For this, a multiphase oscillator
based on a STR is tuneable by adjusting the frequency and the
phase resolution between signals.

A. Architecture

The basic element in an STR is a stage. Each stage con-
sists of a Muller gate and an inverter, and implements the truth
table shown in Fig. 2. If the forward input F is different from
the reverse input R, the output C takes the same value as F ;
otherwise, the previous output is maintained.

The STR architecture implements a micropipeline (ripple
FIFO) introduced by Sutherland in [20] (see Fig. 3). The hand-
shake protocol used guarantees the phase distribution between
the micropipeline stages.

B. Behavior and Configuration

In order to understand the STR operation we need to define
the following parameters.

1) L: The number of stages that compose the STR. Each
stage can be initialized either to 0 or 1.

2) Tokens and Bubbles: A stage contains a token if its output
Ci is not equal to the output Ci+1. Conversely, a stage
contains a bubble if its output Ci is equal to the output
Ci+1. The number of tokens (NT) and bubbles (NB) can
be chosen during the initialization phase.

3) N : The number of events distributed throughout the ring,
which equals the number of propagating tokens in the
ring.

Fig. 4. Example of tokens and bubbles propagation in an STR.

A token will propagate to the next stage (si+1) if this stage
contains a bubble. The bubble will occupy the backward stage
si. The STR will have an oscillatory behavior if there are at
least three stages, one bubble, and an even number of tokens.
For example, in an eight-stage STR with an initial distribution
of four tokens and four bubbles, the events will propagate as
shown in Fig. 4.

It is important to note that the propagation delay of the
ring depends on two analog phenomena: 1) charlie effects; and
2) drafting effects. The Charlie effect is related to the separation
time between events at the inputs: a shorter separation time of
events results in a longer stage propagation delay. The drafting
effect connects the gate propagation delay with the elapsed time
for the output events. According to [21], the drafting effect is
negligible in FPGAs. We refer the reader to [22], where a com-
plete model that explain both phenomena and how they affect
the ring propagation delay can be found.

As for the configuration possibilities, the frequency can be
fine tuned in the initialization phase by changing the ratio
between tokens and bubbles, i.e., NT/NB. The maximum fre-
quency is reached when

NT

NB
� Dff

Drr
(2)

where Dff and Drr are the static forward and static reverse
propagation delays, respectively.

The phase shift between two stages separated by n stages can
be calculated as

ϕn = n× N

L
× 90◦. (3)

Note that if L is a multiple of N , some outputs will have the
same phase, as it happens in the example shown in Fig. 4.
In particular, there will be four different phases throughout
the ring, with each phase appearing in two different stages
(stagei and stagei+4). Thus, for applications of this oscillator
in which the goal is typically to generate the maximum number
of different phases, L mod N should not be equal to 0.

IV. OUR DESIGN

The design presented in this paper is inspired by the TRNG
proposed by Kohlbrenner and Gaj in [10]. We use the same
architecture but replace the ROs by two STRs. Cherkaoui et al.
carried out in [21] an exhaustive comparison between ROs
and STRs. According to this work, the main differences are as
follows.



94 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016

Fig. 5. STR structure of our TRNG.

Fig. 6. Sampler structure of our TRNG.

1) STR robustness to voltage variations can be enhanced by
adding more stages. ROs do not offer this feature.

2) STRs present a lower extra-device frequency variation
when operating at high frequencies.

3) In STRs, the period jitter does not depend on the number
of stages but it is mostly dependant on the jitter generated
at each stage.

From the security point of view, these features are very inter-
esting. In fact, in [21], the authors conclude that STRs are more
robust to attacks than ROs and this property is inherited by our
proposal. Furthermore, replacing ROs by STRs provides our
design with the possibility of having at least L different signals
in each STR. Each one of those L signals can be used as a sam-
pling or sampled signal, since each stage can be considered as
an independent source of entropy [16], the number of stages is
equal to the number of independent entropy sources. Moreover,
STRs are highly configurable. In particular, it is very easy to
set the desired frequency for the STR output, which allows a
fine-grained control over the resulting speed of the TRNG.

A. Architecture Overview

Figs. 5 and 6 show the different blocks that make up our
TRNG. Fig. 5 depicts the two STRs used in our design. Both
STRs are composed of L stages that generate L different out-
puts with a frequency fSTR. The number of tokens and bubbles
are selected in the reset phase attending to the frequency and
phase necessities.

The jitter contained in the STR outputs is extracted using the
sampler circuit shown in Fig. 6. Each sampler circuit is com-
posed of four-dimensional (4-D)-type flip-flops and one XOR

gate. The first flip-flop uses the signal SBi to sample the sig-
nal SAi. The signal S0 will be high while the rising edges of
SBi occur during the high level of SAi. In Fig. 7, we show the
behavior of S0 taking into account that SBi contains jitter. As

Fig. 7. Sampler behavior.

consequence of such a jitter, the cycle length of S0 will not be
constant.

In our design, both signals SBi and SAi contain jitter. As
a variation of the original sampler design that includes a 1-bit
counter latched by S0, in our design, we use the simplified ver-
sion presented in [19]. In this scheme, instead of counting the
cycles of SBi, we count the number of cycles that S0 is at a high
level. If such a number of cycles is even, the previous output is
maintained; otherwise, the output changes. Two D flip-flops and
one XOR gate are involved in this process. Finally, the last flip-
flop samples the signal C0 using an external clock. This external
clock determines the TRNG throughput. As our design is com-
posed of two STRs with L stages each, L sampler circuits are
necessary (see Fig. 1).

Finally, our design includes a postprocessing unit that might
be needed depending on the quality, in terms of randomness,
of the raw data. The selected postprocessing is a parity filter,
which has been widely used as postprocessing in previous pro-
posals such as [16] and [18]. More precisely, an nth parity filter
takes n consecutive bits and XOR all of them together to pro-
duce one bit. This postprocessing offers a simple bias reduction
with the penalty of a throughput reduction—the filter reduces
the bit generation by a factor of n.

V. EXPERIMENTAL RESULTS

In order to evaluate the portability of our proposal, we have
implemented our design on FPGAs from three different man-
ufacturers: 1) a Spartan-3E XC3S500E FPGA from Xilinx;
2) an Igloo M1AGL1000 from Microsemi; and 3) a Cyclone II
EP2C5F256C8 from Altera. As expected, the obtained results
are similar in all of them. In addition, to show the independence
of our design from the manufacturing technology, we have also
implemented one final chosen design on another two differ-
ent FPGAs that use different process technologies: 1) a Virtex
5 XC5VLX110T (65 nm); and 2) a Virtex 6 XC6VLX240T
(40 nm) from Xilinx. In the following, we discuss our results
in detail.

Two eight-stage STRs have been implemented and config-
ured in the reset phase to obtain an STR output frequency of
300 MHz. Several frequencies have been used in the external
clock that samples the signal C0. Eight bits are generated with
each rising edge of the sampling clock.

In order to obtain almost the same propagation delay in the
different stages, a hard macro (or its equivalent for other FPGA
vendors) has been designed. This hard macro implements a
Muller gate and an inverter using a single look-up table (LUT).



MARTIN et al.: NEW TRNG BASED ON CS WITH STR 95

Fig. 8. Time evolution and histogram of S0.

We have chosen two STRs with eight stages since this con-
figuration is easily tunable and offers a good tradeoff between
area and throughput. In addition, this configuration allows the
generation in parallel of 8 bits (1 Byte), which is a typical bit
length used in many applications. The throughput goal has been
set to 1 Mb/s to be comparable to other TRNGs proposals based
on CS. This throughput threshold will set the lowest sampling
frequency that can be used in our design.

A. Testing Randomness

In this section, we discuss the quality of the TRNG output in
terms of randomness. Following the standard practice in this
field, we first show that the STR outputs have Gaussian jit-
ter and then report the results obtained with three widely used
suites of statistical tests for cryptographic applications. We have
also carried out a restart experiment to provide evidence that the
output is different after repeatedly restarting the system under
the same conditions.

Due to space limitations, all results reported in this section
correspond to traces obtained with the Spartan-3E XC3S500E
FPGA. The conclusions for the other four FPGAs are identical
to those shown here.

1) Evidence of the Gaussian Jitter: In order to show evi-
dence of the presence of Gaussian jitter in the STR outputs, we
have counted the number of cycles of the signal S0, as done
in [19] and [10]. Fig. 8 depicts the time evolution of the S0

length (top) and a histogram of the cycles (bottom). The his-
togram population corresponds with 1.3×106 measurements.
The average period of S0 is 38.69 ns with an standard devia-
tion of 0.215 ns. As the frequency of the STR has been set to
300 MHz, which means that the average cycle length is 11.61
cycles. In conclusion, the histrogram distribution clearly shows
evidence of the underlying randomness in the sampling process,
and by extension, in each stage of the STR.

2) Restart Experiment: Following the same procedure
used in [12] and [23] to distinguish the amount of true ran-
domness contained in a pseudorandom oscillating signal, we
have carried out a restart experiment. In Fig. 9, nine oscillo-
grams of repeated restarts from identical starting conditions are
presented. The horizontal axis represents the time and shows
the first 20 bits generated after each restart (the period of time
shown for each restart is 20 µs using a sampling clock of

Fig. 9. Nine output sequences captured after restarting the TRNG. Note
that all sequences are different.

1 MHz). The vertical axis is the voltage of the output signal.
Only nine curves out of the 1000 generated are shown. It is
clear that the TRNG generates different traces after the same
restarting point.

3) Statistical Evaluation of the Output: The testing of
our proposal has been carried out using the NIST statistical
test suite [24], as commonly done to validate previous pro-
posals (e.g., [9], [10], [18]). To transfer the bits generated by
the TRNG in the FPGA to the host computer where the NIST
tests are executed, a FIFO memory and an RS232 communi-
cation protocol have been used. In addition, the postprocessing
has been conducted in the host computer in order to reduce the
acquisition time of the traces.

We have evaluated the TRNG output for the following set
of sampling frequencies: 50, 25, 10, 5, 1, and 0.5 MHz). A
higher sampling frequency will imply a higher throughput, but
also a lower quality of the random bits due to the fact that
the jitter accumulation time is shorter. According to the study
presented in [25], a longer accumulation time is desirable so
that the contribution of the thermal noise (responsible of the
nondeterministic jitter) is perceptible. On the other hand, the
use of a longer accumulation time causes that the flicker noise
(responsible of the deterministic jitter) dominates the jitter. This
paradox forces designers to find a tradeoff to set the sampling
frequency.

For the postprocessing, we have tested the minimum parity
filter order (bit-wise XOR tree) necessary to pass the NIST tests
for the different sampling frequencies studied. A third-order fil-
ter is needed for 50 MHz, while a second-order filter suffices
for the rest. As expected, the postprocessing necessities are
higher when higher sampling frequencies are used. Although
many sampling frequencies need the same order parity fil-
ter, it is important to notice that the proportion of failed tests
before the postprocessing rises when the sampling frequency
is increased, as explained below. This is a crucial point if for
some reason the TRNG will be used without the postprocessing
block.

We have evaluated the quality of the raw data before the post-
processing for the six sampling frequencies studied. Fig. 10
shows boxplots of the p-value distribution for each sampling



96 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016

Fig. 10. Boxplots of p-value distributions for each sampling stage (b1 to b8) and different frequencies.

TABLE I
EXPERIMENTAL RESULTS: PASS RATE (PR) PROPORTION AND AVERAGE P-VALUE (PV) FOR GENERATED TRACES

stage (b1–b8) and different frequencies. According to the doc-
umentation provided by NIST, a random stream must present
uniformity in the distribution of its p-values. It can be seen
in Fig. 10 that higher sampling frequencies presents less
uniformity for its p-values distribution than lower sampling
frequencies, which are more uniform.

Further evidence of this phenomenon is presented in Table I,
which shows the proportion of traces that pass the statistical
tests (PR) and the average p-value (PV) for the different sam-
pling stages and frequencies. Note that traces corresponding to
b5 and b6 perform quite badly, specially b6. For sampling fre-
quencies of 0.5 and 1 MHz, only a single trace (b5) fails the
NIST tests before the postprocessing. It is noteworthy, however,
that b5 fails the tests by a narrow margin. Three traces of b5 fail
the tests for the sampling frequencies of 5, 10, and 25 MHz, and
seven traces fail for 50 MHz. As for b6 traces, they fail badly for
the sampling frequencies between 5 and 50 MHz. This consis-
tent behavior in b6 is mainly due to the fact that the synthesizer
has placed the sampling stage that generates the b6 stream in
a way that causes a huge delay between the sampling (SA6)
and the sampled (SB6) signals. This problem could be solved

using a manual placement and routing process. In fact, we have
tested this using manual placement and routing and setting the
sampling frequency to 50 MHz results in a design such that the
raw stream of bits without postprocessing passes the NIST tests.
Nevertheless, one major design goal of our proposal is to avoid
such a manual procedures.

We have evaluated the quality of our proposed TRNG after
postprocessing. A sampling frequency of 1 MHz has been
selected for this experimentation since this frequency offers a
tradeoff between throughput and randomness quality before the
postprocessing stage. We have opted for having a good quality
signal without postprocessing to make stronger our TRNG pro-
posal against some attacks. ENT [26], DIEHARD [27], NIST
[24], and AIS31 [28] suites have been used for analyzing the
randomness quality.

In Table II, we summarize the results obtained with ENT,
which resemble those obtained with a genuine random vari-
able, such as the chi-square test is passed, entropy is extremely
high, the serial correlation is very low, etc. DIEHARD is a
much more demanding battery of tests for checking random-
ness. As in the case of the NIST suite, DIEHARD is particularly



MARTIN et al.: NEW TRNG BASED ON CS WITH STR 97

TABLE II
ENT RESULTS FOR A SAMPLING FREQUENCY SET TO 1 MHZ

Fig. 11. Distribution of p-values for the DIEHARD and NIST test suites.

TABLE III
AIS31 RESULTS FOR THREE FPGAS

designed for cryptographic applications and includes a number
of statistical tests (e.g., frequency, rank, fft, monkey, runs, and
so on). A final p-value is obtained for each test. If we take a
significance level of 0.05, p < 0.025 or p > 0.975 means that
the TRNG fails the test. To show evidence that our proposed
TRNG behaves as a random variable, in Fig. 11, we depict the
distribution of p-values for all tests included in both suites. In
particular, all the p-values in the NIST and DIEHARD suites
are within the interval [0.2, 0.8], so the TRNG passes all tests
in both suites.

Finally, we have evaluated the data acquired from the three
FPGAs using the AIS31 statistical test suite. Using two sam-
pling frequencies of 50 and 1 MHz, we have gathered a 1-MB
sequence of raw data. The results for the AIS31 statistical suite
are depicted in Table III. Note that tests T1–T4 correspond to
four FIPS 140-1 tests (poker, monobit, runs, and long runs).
T5 is an autocorrelation test, T6 is a uniform distribution test,
T7 is a comparative test for multinomial distributions, and T8
is an entropy test. According to the AIS31 recommendations,
raw data from the TRNG output or at least data at the output
of the arithmetic postprocessing, should pass T5 through T8.
The column npmin represents the minimum filter order to com-
ply with this requirement. For the AIS31 results—as shown in

TABLE IV
HARDWARE RESOURCES

Table III and, equivalently, for NIST p-values in Fig. 10—we
have obtained better results for lower frequencies.

From all of the above, we can conclude that our TRNG
outputs a bit stream that looks like a true random variable.

B. Hardware Resources

The results presented in this section correspond to our
chosen design with a sampling frequency of 1 MHz. The
architecture consists of two eight-stage STRs, eight sam-
pling stages, and a second-order parity filter as postprocessing
block.

Since each STR stage uses a single LUT, the STRs occupies
2× L LUTs. As shown in Fig. 6, the sampler structure uses four
registers and an XOR gate (one LUT). Therefore, the number of
LUTs used by the sampler structure is L and the number of reg-
isters is 4L. Finally, the postprocessing requirements depend
on the parity filter of order n. The LUTs used by the postpro-
cessing is also conditioned by the inputs of each LUT. Since a
four-input XOR gate, as in the case of two-input XOR gates, can
be implemented using one LUT, the number of LUTs, and reg-
isters will be L and nL, respectively—the filter order is 2 for
1 MHz sampling frequency, as explained in Section V-A3.

In summary, observing the results above we can conclude
that each raw random bit (before postprocessing) has a cost of
three LUTs and four registers. Therefore, for a given sampling
frequency (fsampling), a designer could improve the throughput
by adding more stages to the STRs. This will result in fsampling

bps per additional stage. On the other hand, this improvement
translates into a circuit area penalty of three LUTs and four
registers per additional stage.

Table IV summarizes the amount of resources needed to
implement our TRNG on five different FPGAs. The differ-
ences in terms of the combinational logic elements for the set
of FPGAs analyzed are related to the optimizations carried out
by the different synthesis tools. Note that the same amount of
hardware resources are obtained for the three Xilinx FPGAs
(i.e., Spartan and Virtex). This is due to the fact that we have
tailored the hard macro created for the Spartan-3E to fit into
the Virtex 5 and 6. It is important to emphasize the decision of
implementing each STR stage in a single LUT to have almost
the same delay between consecutive stages to avoid bottleneck
effects.

Regarding throughput, our proposal is able to generate ran-
dom bits in parallel. For the proposed architecture, eight ran-
dom bits are generated each two clock cycles. This feature
can be very interesting for some applications that require the
generation of random bits in parallel.



98 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016

TABLE V
TRNG COMPARISON

C. Comparison With TRNGs Based on CS

Next, we present a comparison between our proposal and
other TRNG designs that use CS. We also include the proposal
of Cherkaoui et al. [16] since it is based on STRs. For each
proposal, we have analyzed the hardware resources needed and
the offered throughput. In addition, we have also considered
the hardware complexity, including the degree of automation of
the design, and its portability (device independence). Regarding
hardware complexity, we distinguish three categories.

1) Low complexity is devoted for designs that can be easily
implemented.

2) Medium complexity implies designs that need to use hard
macros or specific components like PLL or DFS.

3) High complexity considers designs that require a manual
place and route process.

Finally, the portability aspect represents whether the design
needs special resources or efforts to be implemented in different
FPGA vendors or devices.

We emphasize here that the hardware results presented in
Table V constitute an estimation for the designs in which the
authors do not provide specific results. For Cherkaoui et al.’s
proposal, we selected the architecture that implements 255
stages.

Table V shows the comparison between our design and other
TRNG proposals. It can be noted that our proposal offers a very
good tradeoff between the set of parameters evaluated. TRNGs
that need a complicated place and route process (e.g., [10] and
RO–RO [19]) are superior in terms of hardware resources, but
these designs have the drawback of requiring a specific design
for each particular device. Among the TRNGs based on CS,
our design offers the highest throughput. Note that this could
be even better if a higher sampling frequency would have been
selected, although this might degrade the quality of the random
signal. On the other hand, Cherkaoui et al.’s TRNG presents the
highest throughput, but uses around 10 times more resources
than our proposal. As aforementioned, in terms of throughput
our TRNG generates eight random bits in parallel. Finally, it
is worth mentioning that our proposal is highly portable and
complies with the two requirements set in Section I; i.e., our
design is technology and device independent.

D. Comparison With Other FPGA-Based TRNGs

In Section V-C, we have carried out an exhaustive compari-
son between our proposal and other TRNGs based on CS. Now,
we present a qualitative comparison with other state-of-the-art

TRNGs implemented on FPGAs that present some interesting
metrics.

Among the several proposals reported in this field, the TRNG
proposed by Varchola and Drutarovsky [29] stands out because
of its lightweightness. This design takes advantage of the
metastability on a new bi-stable structure—transition effect ring
oscillator (TERO). In terms of area (two CLBs), this TRNG
is more lightweight than our proposal but present a very poor
throughput (250 Kb/s). In addition, experiments show that
proper placement and routing strategies are essential.

Exploiting some features of embedded RAMs has become
a popular principle nowadays because of the high throughput
that can be achieved. Among the proposals that take advantage
of SRAMs, those that use write collisions to extract entropy
are worth mentioning [30], [31]. The key idea here consists
of generating a conflict in a particular address by trying to
write opposite values at the same time. In comparison with
our TRNG, these proposals present better results in terms of
area and throughput, but their portability constitutes a handicap
because an enrolment process is necessary in order to identify
distinctive BRAMs in each FPGA.

Another interesting proposal based on high fanout nets was
presented by Cret et al. in [32]. Its performance is remark-
able regarding portability and its high throughput (60 Mb/s).
However, in terms of area, our proposal outperforms this
design. Very recently, Wieczorek presented a new FPGA-based
TRNG [33] that offers metrics similar to those of our design.
The portability of this TRNG is currently under study because
only a Xilinx implementation has been reported. Another inter-
esting work is the complementary design proposed in [34],
which outperforms ours in terms of throughput but whose porta-
bility has not been deeply studied since the results are only
validated on a Virtex-6 FPGA. Furthermore, the design in [34]
includes a place and route procedure to guarantee the TRNG
randomness, which implies some extra effort for the designer
when implementing the TRNG in different FPGAs.

All in all, our TRNG presents an attractive tradeoff among
hardware footprint, throughput, and portability when compared
with existing proposals.

VI. CONCLUSION

There is a wide set of applications, ranging from security
services to simulations, computer games, and problem solving
tools, where pseudorandom number generators play a central
role. In many cases, as a consequence of the high throughput



MARTIN et al.: NEW TRNG BASED ON CS WITH STR 99

required and the high-quality randomness demanded, the use
of software-based solutions is simply infeasible. Motivated by
this, many FPGA-based proposals have appeared recently.

TRNGs in FPGAs mainly exploit metastability and jitter
phenomena as sources of randomness. In this paper, we have
proposed a TRNG based on CS, which is a phenomenon that
seems to provide good results in previous proposals. Most pre-
vious works based on CS rely on either a PLL or an RO. The
use of these components has two major drawbacks.

1) It makes the design dependent of the FPGA vendor, for
instance, not all FPGA vendors support PPLs.

2) It requires manual placement and routing for setting
particular frequencies for each device.

To avoid these two drawbacks, we have proposed a novel
design where ROs or PLLs are replaced by STRs. We argue that
the use of STRs is very convenient, because it provides robust-
ness against frequency and voltage variations while simultane-
ously offering one independent source of entropy for each ring
stage. Thus, the resulting TRNG combines the power of CS and
the robustness and portability linked to STRs. Furthermore, our
design does not depend on the FPGA vendor, and the placement
and routing is performed automatically by the synthesis tool.

Our proposal outperforms all previous TRNGs based on CS
and its throughput could be further increased if we relax our
requirements about the quality of the random signals before the
postprocessing (e.g., for non-cryptographic applications). We
have studied in detail the most restrictive design with a sam-
pling frequency set to 1 MHz. In terms of randomness, our
TRNG passes all batteries of tests for checking the randomness
of a random number generator (ENT, DIEHARD, and AIS31),
and also others like NIST that are devoted to evaluate generators
designed for cryptographic applications.

REFERENCES

[1] S. Saab, J. Hobeika, and I. Ouaiss, “A novel pseudorandom noise and
band jammer generator using a composite sinusoidal function,” IEEE
Trans. Signal Process., vol. 58, no. 2, pp. 535–543, Feb. 2010.

[2] J.-L. Danger, S. Guilley, and P. Hoogvorst, “High speed true ran-
dom number generator based on open loop structures in FPGAS,”
Microelectron. J., vol. 40, no. 11, pp. 1650–1656, 2009.

[3] R. Vaidyanathaswami and A. Thangaraj, “Robustness of physical layer
security primitives against attacks on pseudorandom generators,” IEEE
Trans. Commun., vol. 62, no. 3, pp. 1070–1079, Mar. 2014.

[4] X. Fang, Q. Wang, C. Guyeux, and J. M. Bahi, “Fpga acceleration of a
pseudorandom number generator based on chaotic iterations,” J. Inf. Sec.
Appl., vol. 19, no. 1, pp. 78–87, 2014.

[5] D. B. Thomas and W. Luk, “The lut-sr family of uniform random number
generators for FPGA architectures,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 21, no. 4, pp. 761–770, Apr. 2013.

[6] P. Wieczorek, “Dual-metastability FPGA-based true random number
generator,” Electron. Lett., vol. 49, no. 12, pp. 744–745, Jun. 2013.

[7] D. Lubicz and N. Bochard, “Towards an oscillator based trng with a cer-
tified entropy rate,” IEEE Trans. Comput., vol. 64, no. 4, pp. 1191–1200,
Apr. 2015.

[8] V. B. Suresh and W. Burleson, “Entropy extraction in metastability-based
trng,” in Proc. IEEE Int. Symp. Hardware-Oriented Sec. Trust (HOST),
Jun. 2010, pp. 135–140.

[9] M. Fischer and V. Drutarovsky, “True random number generator embed-
ded in reconfigurable hardware,” in Proc. Int. Workshop Cryptogr.
Hardware Embedded Syst. (CHES’02), 2002, vol. 2523, pp. 415–430.

[10] P. Kohlbrenner and K. Gaj, “An embedded true random number genera-
tor for FPGAS,” in Proc. 12th Int. Symp. Field Programm. Gate Arrays
(ACM/SIGDA’04), 2004, pp. 71–78.

[11] S. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” IEEE Trans.
Comput., vol. 58, no. 1, pp. 109–119, Jan. 2007.

[12] K. Wold and C. H. Tan, “Analysis and enhancement of random number
generator in FPGA based on oscillator rings,” Int. J. Reconfig. Comput.,
vol. 2009, pp. 4:1–4:8, 2009.

[13] N. Bochard, F. Bernard, V. Fischer, and B. Valtchanov, “True-randomness
and pseudo-randomness in ring oscillator-based true random number gen-
erators,” Int. J. Reconfig. Comp., vol. 2010, 2010, Article ID 879281
[Online]. Available: http://dx.doi.org/10.1155/2010/879281

[14] P. Bayon et al., “Contactless electromagnetic active attack on ring oscil-
lator based true random number generator,” in Proc. 3rd Int. Workshop
Construct. Side-Channel Anal. Secure Des. (COSADE), 2012, pp. 151–
166.

[15] A. T. Markettos and S. W. Moore, “The frequency injection attack on
ring-oscillator-based true random number generators,” in Proc. 11th Int.
Workshop Cryptogr. Hardware Embedded Syst., 2009, pp. 317–331.

[16] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high
speed true random number generator with entropy assessment,” in Proc.
Int. Workshop Cryptogr. Hardware Embedded Syst. (CHES’13), 2013,
vol. 8086, pp. 179–196.

[17] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical model of phys-
ical RNGS based on coherent sampling,” Tatra Mt. Math. Publ., vol. 45,
pp. 1–14, 2010.

[18] O. Cret, A. Suciu, and T. Gyorfi, “Practical issues in implementing
TRNGS in FPGAS based on the ring oscillator sampling method,”
in Proc. 10th Int. Symp. Symbol. Numer. Algorithms Sci. Comput.
(SYNASC’08), 2008, pp. 433–438.

[19] B. Valtchanov, V. Fischer, and A. Aubert, “Enhanced TRNG based on
the coherent sampling,” in Proc. 3rd Int. Conf. Signals Circuits Syst.
(SCS’09), 2009, pp. 1–6.

[20] I. E. Sutherland, “Micropipelines,” ACM Commun., vol. 32, no. 6,
pp. 720–738, 1989.

[21] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “Comparison of self-
timed ring and inverter ring oscillators as entropy sources in FPGAS,” in
Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE’12), 2012, pp. 1325–
1330.

[22] A. Winstanley and M. Greenstreet, “Temporal properties of self-timed
rings,” in Correct Hardware Design and Verification Methods, vol. 2144.
New York, NY, USA: Springer, 2001, pp. 140–154.

[23] M. Dichtl and J. D. Golic, “High-speed true random number genera-
tion with logic gates only,” in Cryptographic Hardware and Embedded
Systems (CHES), vol. 4727, P. Paillier and I. Verbauwhede, Eds. New
York, NY, USA: Springer, 2007, pp. 45–62.

[24] A. Rukhin et al., “A statistical test suite for random and pseudoran-
dom number generators for cryptographic applications,” Natl. Inst. Stand.
Technol., Gaithersburg, MD, USA, Tech. Rep., 2010 [Online]. Available:
http://csrc.nist.gov/rng/

[25] P. Haddad, Y. Teglia, F. Bernard, and V. Fischer, “On the assumption of
mutual independence of jitter realizations in P-TRNG stochastic models,”
in Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE’14), 2014, pp. 1–6.

[26] J. Walker. (1998). Randomness Battery [Online]. Available:
http://www.fourmilab.ch/random/

[27] G. Marsaglia. (1996). The Marsaglia Random Number CDROM
Including the Diehard Battery of Tests of Randomness [Online].
Available: http://stat.fsu.edu/pub/diehard

[28] W. Schindler and W. Killmann, “Evaluation criteria for true
(physical) random number generators used in cryptographic appli-
cations,” in Proc. Revised Papers 4th Int. Workshop Cryptogr.
Hardware Embedded Syst., 2003, pp. 431–449 [Online]. Available:
http://dl.acm.org/citation.cfm?id=648255.752732

[29] M. Varchola and M. Drutarovsky, “New high entropy element for fpga
based true random number generators,” in Cryptographic Hardware
and Embedded Systems (CHES 2010), vol. 6225, S. Mangard and F.-
X. Standaert, Eds. New York, NY, USA: Springer, 2010, pp. 351–365.

[30] T. Guneysu and C. Paar, “Transforming write collisions in block RAMs
into security applications,” in Proc. Int. Conf. Field-Programm. Technol.
(FPT’09), Dec. 2009, pp. 128–134.

[31] T. Gyorfi, O. Cret, and A. Suciu, “High performance true random num-
ber generator based on FPGA block RAMs,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process. (IPDPS’09), May 2009, pp. 1–8.

[32] O. Cret, T. Gyorfi, and A. Suciu, “Implementing true random number
generators based on high fanout nets,” Rom. J. Inf. Sci. Technol., vol. 15,
no. 3, pp. 277–298, 2012 [Online]. Available: www.scopus.com

[33] P. Wieczorek, “An FPGA implementation of the resolve time-based true
random number generator with quality control,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 61, no. 12, pp. 3450–3459, Dec. 2014.



100 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 1, FEBRUARY 2016

[34] X. Yang and R. C. C. Cheung, “A complementary architecture for
high-speed true random number generator,” in Proc. Int. Conf. Field-
Programm. Technol. (FPT), Dec. 2014, pp. 248–251.

Honorio Martin received the Ph.D. degree in advanced electronics
systems, from Universidad Carlos III de Madrid, Spain, in 2015.

He is a Postdoctoral Researcher with the Department of Electronics
Technology, Universidad Carlos III de Madrid, Madrid, Spain. His
research interests include the study of lightweight cryptography hard-
ware implementations, radio-frequency identification systems, and low-
power designs.

Pedro Peris-Lopez received the M.Sc. degree in telecommunications
engineering and the Ph.D. degree in computer science from Universidad
Carlos III de Madrid, Spain, in 2007.

He is a Visiting Lecturer with the Department of Computer Science,
Universidad Carlos III de Madrid, Madrid, Spain. He has authored
a great number of papers in specialized journals and conference
proceedings on radio-frequency identification systems (RFID), and
implantable medical devices (IMD). His research interests include pro-
tocols design, primitives design, lightweight cryptography, cryptanalysis,
RFID, and IMD.

Juan E. Tapiador received the M.Sc. and Ph.D. degrees in computer
science from the University of Granada, Granada, Spain, in 2000 and
2004, respectively.

He is an Associate Professor with the Department of Computer
Science, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.
Between 2009 and 2011, he was Research Associate with the University
of York, York, U.K., before joining UC3M. His research interests include
applied cryptography, and computer and network security.

Enrique San Millan received the M.Sc. degree in mathematics from La
Rioja University, Logroño, Spain, in 1996 and the Ph.D. degree in math-
ematics engineering from the Universidad Carlos III de Madrid, Madrid,
Spain, in 2003.

He is an Associate Professor with the Department of Electronics
Technology, Universidad Carlos III de Madrid. His research interests
include hardware design of digital circuits and systems for several fields
(cryptography, biometry, fault tolerant systems, and communications),
and computer assisted design (CAD) tools for design automation and
optimization of digital integrated circuits.


