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A B S T R A C T   

Novel biometric systems have emerged in recent years as an alternative or complement to traditional identifi-
cation systems based on passwords (something you know) or tokens (something you have). In this sense, bio-
potentials signals such as electrocardiograms (cardiac signal) or electroencephalograms (brain signals) have 
attracted many researchers’ attention. This work proposes an innovative identification technique based on 
electrocardiograms (ECGs) and musical features (e.g., dynamics, rhythm or timbre) commonly used to charac-
terise audio files. In a nutshell, after pre-processing ECG recordings, we transform them into audio wave files, 
split them into segments, extract features into five musical dimensions and finally fed a classifier with these 
instances. The proposal’s workability is confirmed by experimentation using the MIT-BIH Normal Sinus Rhythm 
Database with 18 subjects and offering an accuracy of 96.6 and a low error rate with FAR and FRR 0.002 and 
0.004, respectively.   

1. Introduction 

The use of physiological signals has attracted researchers’ attention 
in the last years [1]. Bio-signals have proven to be effective in a wide 
range of cybersecurity applications, from authentication and identifi-
cation systems [2–5], through cryptographic primitives [6–9], to key 
generation algorithms [10–13], to mention few examples. This kind of 
solutions is universal since vital signals are present in all living people. 
Besides, the acquisition of long datasets is not very demanding for users, 
and systems can be updated with a low interference in the daily user life. 
Regarding performance, the proposed solutions offer high performance, 
and the systems protect against counterfeiting attacks. 

A bio-signal is an electrical and non-electrical signal that can be 
recorded from biological beings. The electrochemical activity of excit-
able cells is responsible for bio-potentials (electrical signal). In the body, 
this kind of cells is in the nervous, muscular and glandular systems. 
These cells transition from a resting potential to an action potential 
when stimulated. Biopotential signals such as (electroencephalograms 
or electrocardiograms) derived from several action potentials produced 
by a combination of different cells [14,15]. This work focuses on elec-
trocardiograms (ECG) signals since researchers have broadly used them 
for security purposes in many works [16–19]. 

The ECG is a graph that represents the changes over the time of the 
electrical activity of the myocardium (heart muscle). The cardiac muscle 
alternatively contracts and relaxes. At resting (polarised state), the in-
sides of cells are negatively charged compared to the outsides. The 
contraction of the myocardium originates the depolarisation. After that, 
repolarisation occurs when the cells return to the resting state. As a 
consequence of the depolarisation and repolarisation, we can observe 
changes in the electrical potential. We can measure these potential 
changes by placing electrodes on the body. 

One cycle of an ECG signal consists of five waves as depicted in Fig. 1. 
The P wave represents the electrical depolarization of the atria. It begins 
at the sinoatrial node and disperses into both left and right atria. Three 
waves (i.e., Q, R and S waves) form the QRS complex. It represents the 
ventricles’ depolarisation and requires a higher voltage electrical signal 
to spread through the ventricle. Lastly, the T wave corresponds to the 
repolarization of the ventricles [20]. 

Contribution: Biopotential signals such as the electrocardiogram 
(ECG), the electroencephalogram (EEG), the electromyogram (EMG) 
represent the electrical activity of organs and useful for medical diag-
nosis. In the last years in the literature, we can find many works 
(handcrafted and non-handcrafted based solutions) which show the 
feasibility of ECG signals for biometrics identification. In this wave, our 
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proof-of-concept proposal is the first contribution to the best of our 
knowledge, which proposes the use of well-established musical features 
(e.g., dynamics, rhythm or pitch) to characterise ECG records previously 
transformed into audio wave files. We have tested a multi-class-classifier 
(one-against-many identification) and binary-classifier (one-against-all 
identification). We have employed a public and well-known dataset 
(MIT-BIH Normal Sinus Rhythm Database) to guarantee our results’ 
reproducibility. 

Organisation: The rest of the article is structured as follows. In 
Section 2, we review the literature related to ECG biometric identifica-
tion and the existing works focused on detecting cardiac disorders using 
heart sounds. We introduce the dataset, pre-processing techniques, 
feature extraction and the two classifiers algorithms used in our exper-
iments in Section 3. In Section 4, we analyse the results for the multi- 
class and binary classifiers. Finally, we extract some conclusions and 
compare our proposal with previous works in Section 5. 

2. Related work 

In this section, we review the most relevant literature related to this 
work. We start presenting the common approaches followed by authors 
to design an ECG-based identification system. We categorise the solu-
tions into handcrafted (fiducial and non-fiducial) and non-handcrafted 
(see Section 2.1 for details). Next, since we transform the ECG records 
into wave sound files in our proposal, we review the usage of cardio 
sounds for medical diagnostic and identification purposes (see Section 
2.2). 

2.1. ECG biometrics: approaches and current trends 

In the last years, we can find many works focused on ECG biometric 
identification [21,3]. We can categorise the existing solution on hand-
crafted and non-handcrafted features [19]. Likewise, we can classify the 
handcrafted solutions as fiducial or non-fiducial based methods. The 
fiducial points of an ECG beat consist of several characteristics points 
such as the peaks amplitude (ΔP, ΔQ, ΔR, ΔS, and ΔT), the amplitude 
difference between two peaks (e.g., ΘPQ or ΘRQ) or the time interval 
between two peaks (e.g., ΔPQ or ΔRS). For the delineation of these fea-
tures, we can employ classical algorithms like the Pan-Tompkins [22], 
the Hilbert transform [23] or even novel approaches based on deep 

learning [24]. The existing works commonly use a subset of the features 
mentioned above to build this kind of identification solutions [25–27]. 

Non-fiducial based approaches extract the ECG records’ statistical 
features without needing to localise fiducial points [28]. For instance, in 
[29] or [30], the authors split ECG signal into non-overlapping segments 
and then computed a normalised autocorrelation for every window. In 
[31], Sidek et al. propose the use of normalised convoluted signals. In 
addition to the above, the extraction of features in a transform domain is 
a broadly used approach [32]. In this wave, in [33], for each ECG 
segment, the authors extract the DCT coefficients that correspond to the 
frequency band between 0 and 40 Hz. Wavelet transform, which pro-
vides time–frequency representation, is also in an in-depth studied 
approach [34,10]. The multi-scale time resolutions allow analysing in 
detail the high-frequency data transitions related to the QRS complex 
and the low-frequency P and T waves [35]. 

Lastly, researchers build the vast majority of ECG identification 
proposals using deep learning [1,3,36]. These non-handcrafted solu-
tions, to a certain extent, avoid the pre-processing and feature-extraction 
phases and aim to reach better performance and robustness [17]. In 
[37], Li et al. present a cascade Convolution Neuronal Network (CCN) in 
which the first CNN is used for feature extraction and the second one for 
biometric identification. Similarly, in [38] the authors use a deep feature 
extractor [39] to transform continuous ECG data into a binary code 
which then used for identification. Luz et al. assess the use of CCN 
networks for human identification using as possible input the ECG raw 
signal or the spectrogram image [40]. In [2] Abdeldayem et al., instead 
of using the spectrogram directly, propose to use spectral correlation 
images to feed the CNN. 

2.2. Cardiac sounds: medical and cybersecurity context 

In the medical setting, cardiac sounds have proven as an effective 
technique to detect cardiac disorders. In the category of handcrafted 
features, for example, in [41] an ensemble classifier is trained with in-
stances that contain features from time, frequency and time–frequency 
domains. In [42], Wan et al. use Mel-Frequency Cepstral Coefficients 
(MFCCs) as features and a classifier based on a Hidden Markov model 
(HMM) to discriminate between healthy and subjects with murmur 
characteristics. In the category of handcrafted features, solutions based 
on deep neural networks have attracted the attention of many 

Fig. 1. One cylce of an ECG tracing.  
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researchers [43,44]. To give some examples, in [45] Bozkurt et al. assess 
the use of a spectrogram, Mel-frequency cepstral coefficients (MFCCs) or 
a Mel-Spectrogram as the inputs to a CNN classifier. Similarly, Deng 
et al. propose improved MFCC features to feed a Convolutional Recur-
rent Neural Network (CRNN) [46]. 

Some authors have explored the use of cardiac sounds, specifically 
phonocardiograms (PCGs), for biometrics purposes in the cybersecurity 
context [47]. The majority of these proposals extract handcrafted fea-
tures on a transform domain [48–50]. In this regard, in [51], we can find 
a comparative study of several cepstral features to characterise PCG 
records for human recognition. Likewise, Huang et al. propose a 
multimodal system based on PCG sounds and chest motions to build an 
authentication system that ensures subjects are alive and prevents 
impersonation attacks [52]. In 2020, Cheng et al. proposed a biometric 
solution in which the PCG segments are decomposed into a group of 
intrinsic mode functions and characterised by dispersion entropy [53]. 

3. Materials and methods 

This section starts by explaining the chosen dataset and how we 
eliminate noise from each ECG record. After that, we describe how a 
wide variety of musical features are extracted from each ECG chunk. 
Finally, we employ a feature selection procedure to reduce the dimen-
sionality problem. 

3.1. Dataset and pre-processing 

In the literature, we can find a wide variety of ECG datasets [54–56]. 
The vast majority of those were recorded in a clinical setting, and sub-
jects suffer a cardiac pathology (e.g., arrhythmias or coronary artery 
disease). In our case (subject identification), a pathology’s existence 
may introduce a bias in the identification process. Motivated for this, we 
chose the MIT-BIH Normal Sinus Rhythm Database1 [54], in which 
cardiologists did not detect significant cardiac conditions in the in-
dividuals. It consists of eighteen long-term ECG records of patients 
treated at Boston’s Beth Israel Hospital. Each user sample consists of two 
leads recordings (ECG1 and ECG2). In our experiments, we use the ECG1 
(a modified lead II) Biomd inspired by previous works [57,58]. 
Regarding the demographic characteristics, the dataset includes five 
men aged 26 to 45 and thirteen women aged 20 to 50. 

Before extracting features from the ECG records, we need to clean the 
signal [59]. We eliminate the DC component at the first step. After that, 
we pass the ECG signal through a pass-band filter to eliminate the main 
noise components (power-line and respiration). We set the lower-cut- 
off-frequency and the upper-cut- off-frequency to 0.67 Hz and 0.45 
Hz, respectively. We follow the above-described procedure with all the 
records in the database. Once we have cleaned the dataset, we are ready 
to extract the features. First, we need to convert the ECG records into 
audio files (i.e., wave files in our experiments2). The details of the 
feature extraction procedure are described below. 

3.2. Features extraction 

We extract features according to five musical dimensions: dynamics, 
rhythm, timbre, pitch and tonality [60]. Dynamics in music is about how 
loud (i.e., from mezzo-forte to fortissimo) or soft (from mezzo piano to 
pianissimo) the sounds are. The rhythm defines how long or short a 
sound is. Terms like temp or meters, which refer to the speed and the 
signature used in the music, respectively, are part of the rhythm feature. 
The timbre is a specific quality that a particular instrument or voice has. 
We often use the spectrum and envelope analysis to determine this 

quality. Pitch classifies sounds depending on their vibration frequency 
(e.g., 850 Hertz corresponds to a high pitch). Finally, tonality is linked 
with the idea that musical compositions are organised around a central 
note. 

Feature extraction in audio files is a well-known discipline in con-
texts such as music or emotion detection [61–64]. We can extract fea-
tures such as the timbre, pitch or tonality to categorise sound records. 
This approach with ECG records, to the best of our knowledge, is novel 
and is inspired by the procedure that doctors and, more particularly, 
cardiologists follow to diagnose our help status. More precisely and 
concisely, the cardiologist uses the stethoscope to check our heart’s 
functioning. In this work, we use the sounds produced by the heart for 
the identification of a subject. We could have used the heart sounds 
recorded through a stethoscope to acquire the cardiac recordings (i.e., 
phonocardiograms – PCG). Still, we opted to use electrocardiograms and 
convert them into audio wave files. The reader should note that PCG and 
ECG records are related as described in [65] or, more recently, in [66]. 
We base our reasoning of using the electrocardiograms on three main 
reasons: 1) the richness of the ECG signal; 2) Authors have used ECG 
signal extensively for human identification; and 3) the existence of 
public datasets with long ECG recordings and control users. From the 
characterisation of these sounds, we employ the features commonly 
used for musical records. 

In our experimentation, we employ the well-known MIRtoolbox to 
characterise the cardiac sounds [67]. The authors designed this toolbox 
to investigate the relation between musical features and music-induced 
emotions. In our work, we aim to use musical features to identify users 
unequivocally. For each user, inspired by [59], we split the ECG wave 
file in windows of W seconds. Then, for each window (instance), we 
extract a vector with N features (N = 103 in our experiments). 

We use a feature selection algorithm to reduce the dimensionality of 
the problem to be solved. In detail, we measure the Information Gain 
(IG) for each attribute concerning the class [68]. Mathematically, 

IG(Class,Attribute) = H(Class) − H(Class|Attribute). (1)  

where H represents then entropy. We have computed the IG for each 
class and then ranked the values from highest to lowest. For the whole 
dataset, we have repeated the above experiment for a set of windows 
size (W = {5 mins., 2 min., 30 s., 10 s., 5 s, and 5 s. }). In Fig. 2, the 
thirty-three variables that contribute some information to the identifi-
cation problem are summarised and displayed in groups (dynamics, 
rhythm and timbre). The vast majority of features correspond to timbre 
features (70%), and the resting ones are divided into 24% of rhythm and 
6% of dynamics features. All in all, we have a 70% reduction in the 
dimensionality of the features. 

3.3. Classification 

This article aims to present a proof-of-concept of using electrocar-
diograms to build an unmistakable identification system. A classifier is a 
vital component of the system. There is a wide variety of alternatives for 
the classifier [69]. We have chosen two well-known supervised classi-
fiers (multilayer perceptrons and random forest) since the purpose of our 
work is not a comparative analysis of classifiers but to show the feasi-
bility of our approach. In short, we described below the two mentioned 
classifiers. 

3.3.1. Multi-layer peceptrons 
Multilayer Perceptrons (MLP) are composed of neurons named per-

ceptrons [70]. A perceptron receives n features as input (i.e., x = x1,x2,

⋯,xn), and each of them has an associate weight (i.e. w = w1,w2,⋯,wn). 
The weighted sum (u(x)) of the input features is passed through an 
activation f function for computing the perceptron’s output. 
Mathematically: 1 The database is available at https://physionet.org/content/nsrdb/1.0.0/  

2 audiowrite(‘ECG.wav’,ECGcleaned, fs) writes a matrix of cleaned ECG data, 
ECGcleaned, with sample rate fs to a wave file called ECG.wav 
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y = f (u(x)) =
∑n

i=1
wixi (2)  

An MLP consists of three layers, and we briefly described each of them. 
The input layer spreads the input features in the first hidden layer. The 
middle layer is made up of a set of hidden layers of perceptrons. The first 
hidden layer uses the input features as inputs -the remaining hidden 
layers employ the previously hidden layer’s outputs. Finally, the output 
layer receives the outcome of each perceptron belonging to the final 
hidden layer. 

The perceptron’s weights are adjusted using the training data, aim-
ing to minimise the mean square error. The tuning of parameters is 
traditionally done using the backpropagation algorithm. 

3.3.2. Random forest 
A decision tree consists of a series of sequential decisions made to 

reach a particular result. In a Random Forest (RF) classifier, many in-
dividual decision trees operate as an ensemble [71,72]. It performs a 
majority voting (or average value) with each classifier’s class outcomes 
to compute the final output. 

The model’s fundamental idea is that many relatively uncorrelated 
models operating together will outperform any individual constituent 
models. There are two pre-requisites for building effective RF classifiers: 
1) the used features have to be representative so that models generated 
surpasses random guessing, and 2) the predictions, and consequently, 
the errors of each tree have a low correlation between each other. 

In a nutshell, we can summarise the RF algorithm in the following 
steps:  

1. Determine the number of decision trees (Nc). 
2. Create Nc datasets (i.e., Dp,p = {1,2,…,Nc), which are called boot-

strap samples.  
3. Set Nf as the number of features for each split (e.g., square root of the 

number of features).  
4. Determine the impurity measure(e.g., Gini, IGini(Xk) =

∑p
j=1p(j|k)(1 − p(j|k)).  

5. For each dataset (p = 1 to Nc)  
(a) Train the dp tree employing the dataset Dp and choosing the best 

split of the Nf randomly-sampled features.  
6. Compute the final output via a majority voting with the Nc trees’ 

final outcomes. 

Our experiments have tested two scenarios: 1) one-against-many 
identification and 2) one-against-all identification. For the former, we 
have assessed the MLP and RF for a set of windows lengths. Since we do 
not observe significant differences between both classifiers, for the 
latter, we have only tested an MLP and setting the window length to 30 s. 
We provide the details of all the conducted experimentation in the 
following section. 

4. Results 

Our proof-of-concept aims to answer the two questions about using 
sound ECG records for identification purposes. First, we design an 
identification system where the provided template is tested against a set 
of possible legitimate users (one-to-many comparisons). As a naive 
example, we might use this solution in a building’s access control system 
where pre-registered users provide a template (a short ECG recording) to 
enter the facilities. Secondly, we design an identification system with 
only two classes (the legitimate one and the rests). For instance, we can 
use this kind of approaches for training the ID verification system in our 
smartphone or smartwatch –modern smartwatches such as Apple watch 
or Withings Move can easily record with a single lead an accurate ECG 
trace3. Using this approach, we make our system more secure since it 
learns to distinguish between our samples and others. We make the 
system resistant against impersonation attacks and implicitly against 
random guessing attacks [73]. In the two above-described scenarios, we 
follow the scheme summarised in Fig. 3, and each one of the components 
has been explained in previous sections. 

For assessing the performance, we have used both the typical metrics 

Fig. 2. Features selection.  

3 https://clinicaltrials.gov/ct2/show/NCT04493749 
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used in biometrics and the metrics commonly employed in artificial 
intelligence. Next, we provide a short definition of this: 1) Accuracy is 
the number of correct predictions divided by the total number of input 
samples; 2) F1 score represents the harmonic mean between precision 
and recall; 3) Precision is the ratio between the number of corrected 
positive results and the number of positive results predicted by the 
classifier; 4) Recall is the number of corrected positive results divided by 
all the instances that the classifier should have identified as positive; 5) 
AUC (Area under a ROC curve) takes a value between zero and one and 
is equivalent to the probability that a classifier will rank higher a 
randomly chosen positive observation than a randomly chosen negative 
observation. In biometrics, the performance is given using two error 
rates: False Acceptance Rate (FAR) and False Rejection Rate (FRR). The 
FAR measures the percentage of unauthorized users classified incor-
rectly as legitimate users. The FRR represents the portion of valid users 
wrongly rejected [74]. 

4.1. One-against-many identification 

Using the 18-users of the MIT-BIH Normal Sinus Rhythm dataset, we 
have designed a multi-class classifier for building the identification 
system. As mention in Section 3.3, we have tested two classifiers: a 
Multilayer Perceptron and a Random Forest. Regarding the RF, the 
depth of three is limited to thirty-three, which is the number of features 
obtained after the feature selection (see Section 3.2 for details). Con-
cerning the MLP, we set the learning rate, momentum, and the number 
of epochs to 0.1, 0.2 and 500, respectively. 

In Table 1 we summarise the results, using 10-fold cross-validation, 
for a set of seven performance metrics. MLP classifiers slightly overpass 
the RF classifiers, but the differences are not very large. A key-decision 
parameter in the system design is the window size of each instance. We 
have tested a comprehensive set of possible windows lengths (i.e. W = {

5 min., 2 min., 30 s., 10 s., 5 s., 3 s. }), inspired by previous works such as 
[49] or [50]. It is clear from the results that larger window sizes lead to 
higher performance. Nevertheless, we can not forget the system’s us-
ability, and the user will not endure very long periods to determine 
whether or not she can access the system. Besides, FAR and FRR are 
critical metrics in biometrics systems. We know that when FAR’s value 
goes down, it implies that FRR’s value goes up and vice versa. The point 
at which both values are equal is named Equal Error Rate (EER). Fig. 4 
shows FAR and FRR depending on the window size for the ML (our best 
classifier). From all these results, as a trade-off between system usability 
and biometrics performance, we recommend setting the window size in 
30 s (or even 2 min, whether supported by the system requirements). 

We next review the results obtained when we set the window size to 
30 s or 2 min. In Figs. 5a and 5b, we show the normalised confusion 
matrix. From the above results, we can conclude that the system works 
properly for the whole set of users belonging to the dataset. None of the 
users shows abnormal behaviour, and also, there are no gender differ-
ences as desirable. The overall accuracy is over 94.5%, which means that 
users’ samples are mostly correctly classified. The good classification 

performance is also confirmed by the AUC value, which is quite close to 
one. 

Additionally, errors (FAR and FRR) are at a low level using half- 
minute of window length. The proportion of times a system grants ac-
cess to an illegitimate user is tiny (FAR = 0.3%). Besides, the ratio of 
times a system rejects a legitimate user is low (FRR⩽5.4%). In our sys-
tem, the FAR (rejection of authorised users) is higher than the FRR 
(unauthorised access). We can compute a parameter K to determine the 
relation between FAR and FRR (i.e. K× FAR = FRR). For our design, the 
K is equal to 18 (W = 30 s.) and 17 (W = 2 min.), respectively. The above 
result is a desirable property in security identification systems since 
unauthorised access is more dangerous than whether legitimate users 
are locked out. 

4.2. One-against-all Identification 

As a supplement to the multi-class classifier, we have analysed the 
system workability for binary classification. Under this setting, the 
samples belong to two classes: authorised and unauthorised users. We 
have designed MLP classifiers for each of the MIT-BIH Normal Sinus 
Rhythm dataset subjects (i.e., in total, eighteen classifiers; Nc = 18). 
Concerning the MLP parameters, we fixed the learning rate, momentum, 
and the number of epochs to 0.1, 0.2 and 500, respectively. Besides, we 
have kept balanced the number of samples of the two classes. Assuming 
a subject-p and acquiring M instances for this target user, we randomly 
take M/(Nc − 1) samples for each of the resting subjects-q (i.e. q ∈ {1,2,⋯,

18} ∧ q ∕= p). In our experiments, each of the subjects has samples from 
20 h of ECG recordings (M = 2400 samples for windows length of 30 s), 
and we have tested the system using 10-fold cross-validation. 

Table 2 summarises each classifier’s results, and all of them offer 
similar performance (the variance is less than 1.4 for the accuracy and 
less than 0.015 for the resting metrics). The low variability means that 
the system is very stable and that the subjects behave the same without 
any bias and regardless of gender. In comparison to the multi-class- 
classifier, the accuracy on-average is slightly superior with an incre-
ment of 0.5%. Regarding errors, the system works in the EER point with 
a percentage of errors less than 5% (i.e. FRR = FAR = 0.0497). All these 
above results confirm the feasibility of the one-against-all identification 
system. 

In addition to the above experiments, we have taken into consider-
ation the impersonation attacks. In this kind of attacks, an adversary 
attempts to bypass the system (e.g., unblock a smartwatch) using signals 
from subjects non-authorised. Mathematically, assuming a target user-p 
that belongs to the class-p and an ECGq sample of a user-q with q ∕= p: 

p(A I) = p(y = class − p|x = ECGq) < α (3)  

We have computed the adversary advantage for impersonation attack 
against each one of the subjects (classifiers). More precisely, in the 
testing, we use samples never seen for the classifier and from different 
users than the target user. From this experimentation, we conclude that, 

Fig. 3. General structure of a cardiac sound identification system.  
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on average, the adversary success probability for an impersonation 
attack is 0.068, which is comparable to the achieved in [52]. This value 
is small and enough for systems such as the block system of a smartwatch 
or even a building access control. Likewise, we can also increase this 
value by assuming a more extended window size (i.e., W parameter in 
our experiments). Finally, we want to highlight that the resistance to 
circumvention (i.e., a low probability of impersonation attacks) is vital 
for biometrics. Our system complies with this property, and this result 
confirms that the musical features extracted from an ECG record trans-
formed into a wave sound are characteristics of each individual. For the 
extraction of the features, we use the entire ECG record’s richness. Note 
that an ECG signal comprises several waves (e.g., P,Q,R and S waves). 
We transform an entire ECG trace into a wave sound preserving all its 
fruitful. 

5. Discussion and conclusions 

The resistance to circumvention mentioned above is one of the 
properties commonly required for a biometric system. The performance, 
explained in Section 4, is another essential feature for biometrics. We 
have shown how our proposal offers high achievement in terms of ac-
curacy, FRR or FAR. Before providing a comparison with other works, 
we will review the remaining five properties (universality, uniqueness, 
permanence, collectability and acceptability) that commonly requires a 
workable biometric system. 

The proposed solution makes use of features extracted from cardiac 
signals. Universality is guaranteed since everyone alive has a beating 
heart, and we can record their electrocardiogram. Besides, the signal is 
available for its recording at any time. Concerning uniqueness, we can 
find many works based on fiducial and non-fiducial features that show 
ECG records’ feasibility for biometrics purposes [19]. To be the best of 

our knowledge, this is the first work that shows how we can unequiv-
ocally identify users using musical features from an ECG record –the 
high accuracy and the tiny FAR and FRR are clear indications of a 
meagre misclassification percentage. 

As humans age, our heart signal changes slightly over the years, and 
we might consider that ECG records are not valid for biometrics due to 
their permanence. Likely, and despite not being fully invariant over 
time, cardiac signals are stable during at least five years [59], and after 
that period, we need to update our system (train the classifier with new 
user instances). Therefore, workability is assured, and the system is 
much less demanding in updating those standard password-based solu-
tions that we use in our daily lives [75,76]. 

Cardiologists often use an electrocardiogram in their diagnostic 
tasks. In the medical setting, 12 or 9-lead electrodes systems are used for 
acquiring the ECG records. Fortunately, in the last years, we can gather 
reliable ECG records using low-cost hardware (e.g., Bitalino [77]) or 
even a modern smartwatch (e.g., Apple watch [78,79] or Withings Move 
ECG [80]) whose ECG traces are medical validated 4. Therefore there are 
no doubts about the collectability of our proposal. Concerning accept-
ability, we can not measure this property directly since we use a known 
and public dataset in our experiments to ensure its reproducibility. 
Nevertheless, the possibility of acquiring an ECG through non-invasive 
devices such as a smartwatch in our wrist (touching it with the hand 
opposite during a short period) suggests high acceptability. Smart or 
sport watches are already widespread and widely accepted in the pop-
ulation [81]. 

Before comparing our proposals with existing works, we highlight 
that our proof-of-concept aims to bring to the table whether musical 
features extracted from an ECG record (previously converted into a wave 
file) are practicable for human identification. We do not intend to make 
a fully exhaustive comparison but rather compare our solution with the 
resembling works – the reader is urged to consult [17] for extensive 
comparatives. In terms of workability and usability, we set the window 
size to a half minute. In Table 3 we summarize the comparative analysis. 
We have chosen five handcrafted solutions (three fiducial and two non- 
fiducial proposals) and three non-handcrafted solutions based on deep 
learning for comparison. In 2016, Choi et al. [26] proposed an ECG 
authentication system based on eight fiducial points. The authors tested 
nine classifiers, including the two ones assessed in this article. Our re-
sults and theirs are almost identical in accuracy and AUC but slightly 
lower in errors (FRR and FAR). Sidek et al. also tested a multilayer 
perceptron achieving higher performance than our proposal regarding 
the accuracy, but no results are provided for errors. In [82] Liu et al. 
used multiscale feature extraction, and their results are mildly inferior in 
accuracy and similar in terms of errors. Pinto et al. proposed a non- 
fiducial approach utilising two transform domains (Discrete Cosine 
Transform and Haar Transform) and tested several classifiers, including 

Table 1 
One-against-many Identification for a set of windows length.  

Experiment Accuracy FRR FAR Precision Recall F1 Score AUC 

MLP (W = 5 min) 96.6% 0.004 0.002 0.966 0.966 0.965 0.992 
Random Forest (W = 5 min) 96.1% 0.039 0.002 0.961 0.961 0.961 0.998 
MLP (W = 2 min) 96.6% 0.034 0.002 0.966 0.966 0.966 0.997 
Random Forest (W = 2 min) 96.0% 0.040 0.002 0.960 0.960 0.960 0.999 
MLP (W = 30 s) 94.6% 0.054 0.003 0.946 0.946 0.946 0.995 
Random Forest (W = 30 s) 94.5% 0.055 0.003 0.945 0.945 0.945 0.998 
MLP (W = 10 s) 92.0% 0.080 0.005 0.920 0.920 0.920 0.995 
Random Forest (W = 10 s) 89.7% 0.103 0.006 0.898 0.897 0.897 0.994 
MLP (W = 5 s) 88.5% 0.115 0.007 0.885 0.885 0.885 0.990 
Random Forest (W = 5 secons) 85.2% 0.148 0.009 0.852 0.852 0.850 0.990 
MLP (W = 3 s) 84.5% 0.155 0.009 0.846 0.845 0.846 0.985 
Random Forest (W = 3 s) 81.3% 0.187 0.011 0.813 0.813 0.811 0.986  

Fig. 4. Determining the window size (W): FRR vs FAR.  

4 https://www.clinicaltrials.gov/ct2/show/results/NCT04493749?view =

results 
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an MLP [33]. Our proposal overpasses their results, and only FRR is 
slightly higher, but the increment is very tiny. In [83], Pathoumvanh 
et al. studied the robustness of ECG features to heart rate variability, 
achieving marginally better accuracy but did not provide error values. 
Finally, in line with the trend of using Deep Learning, Abdeldayem et al. 

recently proposed an ECG identification system that uses correlation 
images and a convolutional neural network [2]. Their accuracy is 
slightly higher (an increase of 1.06%), and the FAR is higher than the 
FRR as in our proposal. In [84], Zhang et al. tested a multiresolution 1-D- 
convolutional neural network with several databases (including the 

Fig. 5. Normalized Confusion Matrix: ML Perceptron.  
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MIT-BIH Normal Sinus Rhythm Database as in our study). They offered 
an average identification rate of 93.5%, but they did not provide errors 
metrics that are critical in biometrics. In line with the above, in [85] 
Hammad et al. extracted the features of an ECG record using a CNN 
network (VGG-Net), and their accuracy and error results are comparable 
to those of our proposal. Finally, we can compare our proposal with two 
PCG-based proposals in which the authors study several windows sets 
–these references are omitted in Table 3 since the designers only provide 
the accuracy as performance metrics. Setting the window size to a half 
minute, in terms of correctly classified instances, our proposal over-
passes to [49] and is lightly below to [50]. That is, our results are also 
comparable to PCG biometrics works. 

The automatic classification of cardiac sound to detect diseases has 
been carried out for more than 50 years. The first work used a simple 
threshold-based method and then machine learning, and subsequently, 
deep learning-based approaches have emerged strongly [87,46]. Xiao 
et al. recently propose a solution in this wave, which uses a 1-D con-
volutional neural network to classify heart sounds in two classes (normal 
or abnormal) [44]. If we abstract from the problem to be solved, in [44] 
and our work address the classification of heart sounds. Our solution 
lightly surpasses the work mentioned above in terms of accuracy (96.6% 
over 93%). Note that what is relevant is not whether we offer superior 
accuracy but whether our proposal achieves similar performance values 
to similar works in other contexts (notably the medical setting). 

From all the above, our proof-of-concept proposal is competitive in 
terms of performance and errors compared to the previous ECG-based 
identification solutions. It is the first work, to the best of our knowl-
edge, in which ECG records are transformed into sounds (wave files) and 

characterise with musical features for human identification. The use of 
non-fiducial features avoids the complexity and errors of solutions based 
on fiducial points (e.g., R peaks., QT interval). Our proposal is much 
simpler regarding the used classifier than the newest works based on 
deep learning approaches. Also, the results are comparable to the most 
current ones in the medical setting in which phonocardiograms are used 
to detect ailments (e.g., [45] or [46]) or in the cybersecurity context in 
which PCGs are used for identification purposes (e.g., [53], or [52]).We 
use the ECG records as inputs for three reasons: 1) ECG records have 
been widely studied for identification in cybersecurity solutions, 2) ECG 
records are much more fruitful in terms of information than PCG files, 
and 3) There exist many public datasets with long ECG recordings and 
control users. As future work, we will study the combined use of ECG 
and PCG recordings.Besides, studying datasets with subjects under 
different conditions (e.g., resting or exercising) and how these can affect 
system performance is an exciting research line. 
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Table 2 
One-against-all Identification (W = 30 seconds).  

Experiment Accuracy FRR FAR Precision Recall F1 Score ROC Area 

Subjet-1 96.1% 0.039 0.039 0.963 0.961 0.961 0.965 
Subjet-2 95.7% 0.043 0.043 0.958 0.957 0.957 0.964 
Subjet-3 94.3% 0.056 0.056 0.944 0.944 0.944 0.970 
Subjet-4 92.8% 0.071 0.071 0.929 0.929 0.929 0.966 
Subjet-5 96.8% 0.031 0.031 0.970 0.969 0.969 0.967 
Subjet-6 93.8% 0.062 0.062 0.939 0.938 0.938 0.964 
Subjet-7 95.0% 0.050 0.050 0.952 0.950 0.950 0.963 
Subjet-8 95.3% 0.046 0.046 0.954 0.954 0.954 0.971 
Subjet-9 98.5% 0.015 0.015 0.985 0.985 0.985 0.999 
Subjet-10 95.0% 0.050 0.050 0.952 0.950 0.950 0.965 
Subjet-11 95.6 % 0.044 0.044 0.958 0.956 0.956 0.965 
Subjet-12 94.3 % 0.057 0.057 0.944 0.943 0.943 0.964 
Subjet-13 92.7 % 0.072 0.073 0.928 0.928 0.927 0.961 
Subjet-14 93.8 % 0.062 0.063 0.939 0.938 0.937 0.962 
Subjet-15 94.9 % 0.050 0.050 0.951 0.950 0.950 0.961 
Subjet-16 95.6% 0.044 0.044 0.957 0.956 0.956 0.967 
Subjet-17 95.5 % 0.045 0.045 0.957 0.955 0.955 0.965 
Subjet-18 94.5 % 0.055 0.055 0.946 0.945 0.945 0.960 

Overall 95.0% 0.050 0.050 0.951 0.950 0.950 0.967  

Table 3 
A comparative analysis of ECG-based identification solutions.  

Proposal Approach Database Accuracy FRR FAR AUC 

Our proposal (W ¼ 30 s.) MLP (handcrafted; non-fiducial) Physionet-NSRDB 94.6% 0.054 0.003 0.99 
Our proposal (W ¼ 30 s.) RF (handcrafted; non-fiducial) Physionet-NSRDB 94.5% 0.055 0.003 0.99 
Choi et al. [26] MLP (handcrafted; fiducial) Proprietary 93.8% 0.085 0.085 0.98 
Sidek et al. [86] MLP (handcrafted; fiducial) Physionet-NSRDB 99.1% – – – 
Choi et al. [26] RF (handcrafted; fiducial) Proprietary 95.7% 0.062 0.062 0.99 
Liu et al. [82] RF (handcrafted; fiducial) Proprietary 93.1% 0.046 0.010 – 
Pinto et al. [33] MLP (handcrafted; non-fiducial) Proprietary 92.4% 0.033 0.033 – 
Pathoumvanh et al. [83] ED (handcrafted; non-fiducial) Proprietary 97.0 % – – – 
Abdeldayem et al. [2] 2D-CNN (non-handcrafted; non-fiducial) CEBSDB, Physionet-NSRDB 95.6% 0.001 0.022 –   

FANTASIA and others     
Zhang et al. [84] 1D-CNN (non-handcrafted; non-fiducial) CEBSDB, Physionet-NSRDB 93.5% – – –   

FANTASIA and others     
Hammad et al. [85] CNN VGG-Net (non-handcrafted; non-fiducial) MWM-HIT, PTB and CYBHi 96.8 % 0.03 0.03 –  
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