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Recently, using Physical Unclonable Functions (PUF) to design lightweight authentication protocols for 
constrained environments such as the Internet of Things (IoT) has received much attention. In this 
direction, Barbareschi et al. recently proposed PHEMAP in Journal of Parallel and Distributed Computing, 
a PUF based mutual authentication protocol. Also, they extended it to the later designed Salted PHEMAP, 
for low-cost cloud-edge (CE) IoT devices.
This paper presents the first third-party security analysis of PHEMAP and Salted PHEMAP to the 
best of our knowledge. Despite the designer’s claim, we show that these protocols are vulnerable to 
impersonation, de-synchronization, and traceability attacks. The success probability of the proposed 
attacks is ‘1’, while the complexity is negligible. In addition, we introduce two enhanced lightweight 
authentication protocols based on PUF chains (called PBAP and Salted PBAP), using the same design 
principles as PHEMAP and Salted PHEMAP. With the performance evaluation and the security analysis, it 
is justified that the two proposed schemes are practically well suited for use in resource-constrained IoT 
environments.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Internet of Things (IoT) is proliferating nowadays, and re-
searchers are studying and developing different aspects of IoT ap-
plications. For example, IoT could be used in smart homes, where 
IoT devices such as sensors or actuators control temperature, light, 
and house security to improve the quality of life. IoT architec-
ture has three layers: the device layer, the gateway layer, and the 
server or cloud data center layer. The device layer includes vari-
ous IoT devices ranging from very constrained devices (e.g. RFID 
passive tags) to smartphones with some computing capabilities 
to devices with high processing capacities (e.g. general-purpose 
computers). Among them, RFIDs have fundamental importance in 
IoT, thanks to their cost-efficiency. An RFID can work in various 
environments without significant artificial interference, with low 
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energy consumption, to detect, store and send information through 
wireless channels.

Generally, in RFID systems, a unique identity (ID) is assigned 
to each tag to find and recognize a specific device. The reader 
must authenticate an RFID tag before starting communication to 
ensure that the data being exchanged is protected. So far, many au-
thentication protocols for different applications and environments 
have been proposed in the literature. Since the RFID tags usually 
have restricted computation power and storage size, they support 
only simple operations such as exclusive OR (XOR), pseudorandom 
number generator (PRNG), shift operation, etc.

Today, using physical unclonable functions (PUFs) in authentica-
tion protocols has been studied by many researchers and has been 
successfully adopted to achieve authentication and identification in 
the resource-constrained embedded devices [2,13,20–22,41]. A PUF 
works as a digital fingerprint and serves as a unique identity for 
a device [37]. When a device (like FPGA) is fabricated in the man-
ufactory, a PUF entity is embodied in the physical structure. This 
primitive is unique and infeasible to duplicate or predict. In detail, 
an ideal PUF is expected to operate as a one-way function to be 
used in the authentication protocols based on challenge-response 
pairs.
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PUF architectures for silicon devices are mainly classified in two 
classes [30]: (1) delay-based approaches such as the arbiter PUF, 
the ring oscillator (RO) PUF, and the Anderson PUF, that use differ-
ences in paths delays within the specific circuit; and (2) memory-
based solutions such as the SRAM PUF, butterfly PUF, sense ampli-
fier PUF, flip-flop PUF, that exploit the mismatches of the memory 
cells to generate a response to a challenge.

In this paper, we do not focus on how to design an efficient 
PUF. Therefore we suppose that the PUFs used in the authenti-
cation schemes have good behavior, for example, enough stabil-
ity and unpredictability. It is worth noting, to study the security 
of cryptographic constructions, it is common to suppose that the 
crypto primitives, e.g. pseudorandom functions (PRFs) or pseudo-
random generators (PRGs), are all secure, efficient, and scalable. 
Concerning the security evaluation of a PUF-based authentication 
protocol, we suppose that the PUF function is secure and reliable. 
Although no one has ever built an ideal PUF, intensive research 
is being done to build PUFs with better properties, such as good 
entropy and small or even zero-bit error rates. The scientific com-
munity has proposed several PUF based authentication protocols 
for IoT systems in recent years, e.g., [3,11,24,25,39], but few of 
them are suited to use in IoT systems due to their security weak-
nesses [28,31,39].

1.1. Related works

Majzoobi et al. [31] introduced a Slender PUF protocol and 
claimed to be efficient and secure. However, later analysis demon-
strated its vulnerabilities, such as the lack of privacy [5,18]. Aysu et 
al. [5] presented an efficiently PUF based mutual authentication 
scheme between a server and a resource-constrained device. Their 
report showed how the proposed scheme could be implemented 
efficiently on a resource-constrained platform such as SASEBO-GII 
board.

Kulseng et al. [28] proposed a mutual authentication and own-
ership transfer protocol based on PUF and Linear Feedback Shift 
Registers (LFSR). They claimed that their scheme can be imple-
mented efficiently on hardware and is resistant to various attacks. 
However, as discussed in [39], Xu et al. showed that their claim 
is wrong and presented a de-synchronization attack on it. To ad-
dress this vulnerability, they proposed a lightweight authentication 
protocol based on PUF functions and claimed that their proposed 
scheme could withstand various attacks. But Bendavid et al. [8] an-
alyzed the Xu et al. scheme [39] and showed that it’s vulnerable 
to de-synchronization and secret disclosure attacks.

Braeken [11] showed that the PUF based key agreement 
scheme, presented by Chatterjee et al. [12] is vulnerable to imper-
sonation, replay, and man-in-the-middle attacks. She fixed these 
vulnerabilities and proposed a new efficient key agreement scheme 
based on PUF. Recently, Ameri et al. [3] proposed two PUF based 
authentication schemes for high-resource and low-resource de-
vices and proved that their schemes could resist various known 
attacks. Gope et al. [20] proposed a PUF-based mutual authentica-
tion protocol for real-time data access in Industrial Wireless Sensor 
Networks (IWSN). Zhang et al. [42] connected PUF and blockchain 
to develop a privacy-aware PUFs-based multi-server authentication 
protocol in cloud-edge IoT systems. The main target of this protocol 
is to overcome the information leakage due to the explicit stor-
ing of the challenge-response pairs (CRPs) of PUFs generated by 
devices by each edge-server. In another recent work, and almost 
targeting the same problem, Chen et al. [14] proposed Shamir’s 
secret sharing to solve the problem of storing the CRPs in the 
server-side in the proposed PUF-based authentication protocol.

One of the challenges to using most of the above PUF based 
authentication protocols is the vast number of challenge-response 
pairs of PUF needed to be stored by the authenticator and the de-
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vices embedding the PUF. On the other hand, many IoT devices 
are typically resource-constrained in real applications and cannot 
employ traditional PUF based authentication schemes. Therefore, 
most of the existing PUF based mutual authentication protocols 
are impractical and only able to verify the identity of the devices. 
One solution to reduce the number of challenge-response pairs 
is to construct sequences (chains) of challenge-response pairs by 
a recursive invocation of the PUF embedded on the devices. In 
this direction, recently, Barbareschi et al. [6,7] proposed two mu-
tual authentication protocols (called PHEMAP and Salted PHEMAP 
schemes) for low-cost hardware devices which use PUF chains in 
their authentication procedures. The Salted PHEMAP has been spe-
cially designed for cloud-edge (CE) IoT systems. They analyzed 
their schemes through formal and informal security proof and 
claimed that their schemes are secure against various known at-
tacks. In this paper, we analyze, in more detail, the security of 
these protocols and provide the first third-party security analysis 
of them to the best of our knowledge.

1.2. Our contribution

The main contribution of this paper contains two folds:

• First, we analyze the PUF based authentication protocol called 
PHEMAP, proposed by Barbareschi et al. [6] and show that 
this scheme is vulnerable to impersonate attack. Furthermore, 
we demonstrate that the PHEMAP scheme is traceable. In 
the following, we analyze the Salted PHEMAP protocol pro-
posed by Barbareschi et al. [7] for Cloud-Edge (CE) IoT sys-
tems. This scheme is also vulnerable to impersonation, de-
synchronization, and traceability attacks.

• Second, to address this weakness, first we propose a basic 
PUF based mutual authentication protocol (PBAP), and then 
we extend this idea and propose a Salted mutual authentica-
tion scheme (Salted PBAP) suited for CE systems. We analyze 
the security of the two proposed schemes through formal and 
informal methods and prove that these schemes do not have 
vulnerabilities of the two last proposed schemes (noted in this 
paper) and resist known attacks.

1.3. Organization

The remainder of this paper is organized as follows: in section 2
the required preliminaries are presented, including a brief descrip-
tion of the PHEMAP scheme [6] and Salted PHEMAP scheme [7], 
that has been designed for cloud-edge (CE) IoT systems. In sec-
tion 3 we explain how to perform impersonation and traceability 
attacks on the PHEMAP scheme, and also, we will explain the 
weakness of the Salted PHEMAP scheme. To address these vul-
nerabilities, we proposed two improved lightweight authentication 
schemes based on PUF chains called PBAP in section 4 and Salted 
PBAP in section 5 that are resistant against various known attacks. 
Next, we analyze our two proposed schemes through formal and 
informal proof in section 6. The performance efficiency of our two 
proposed schemes has been discussed in section 7. In the end, the 
conclusion of the paper is described in section 8.

2. Preliminaries

Through the paper, we are using the notation represented 
in Table 1.

2.1. PHEMAP scheme

In this section, we give a brief description of the PHEMAP 
scheme [6]. This scheme uses only PUF and the bitwise exclusive 
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Table 1
Notation used in this paper.

Notation Description

γD,c0,M a PUF chain of device D with root 
chain c0 and length M

θD (.) physical unclonable function

li i-th link in chain γ
n nonce generated in the verifier

r random number generated in the tag

S sentinel period

A S an authentication service

G a gateway

D a RFID device

OR operator to encrypt and decrypt messages transferred between 
a verifier and a tag. The proposed scheme contains three phases as 
follows: (1) enrollment, (2) initialization, and (3) verification. Be-
fore we describe the PHEMAP scheme, we need some definitions 
that are taken from [6].

Definition 2.1. Let θD(.) be PUF embedded in device D . The PUF 
chain γD,c0,M with root chain c0 and length M is defined as:

{c0, θD(c0), θ
2
D(c0), ..., θ

M−1
D (c0)} (1)

where θ i
D(.) =

i
︷ ︸︸ ︷

θD(θD(...)) and all of θ i
D (.) are distinct. We referred 

each θ i
D(c0) to as links and noted by li hereafter.

Definition 2.2. Let γD,c0,M be a chain, σ0 be a link on it and S be 
a positive integer. We refer to as chain sentinels all multiple of S , 
starting from link σ0.

2.1.1. Enrollment
In this phase, the verifier generates T distinct chains γD,c0,M

where each root chain c0 is selected randomly, so each link ap-
pears only once over the extracted chains. The length of each chain 
(M) is different and depends on the number of the new distinct 
links that can be generated by iterating the PUF, starting from the 
random root chain c0. All of the T generated chains are stored only 
in the verifier, and the devices store the last synchronized link, 
which is used to compute the last exchanged message.

The number of generated chains depends on the storage capac-
ity of the verifier and the number of devices that can be managed 
by the verifier. In the end, the sentinel period S, is defined and em-
bedded in both the devices and the verifier.

2.1.2. Initialization
The initialization contains four phases as following:

1. The verifier generates a random nonce n and sends

m1 = {li, (⊕S−3
j=0 li+ j+1) ⊕ n, li+S−1 ⊕ n} = {li, v1, v2} (2)

to the device D.
2. Upon receiving the message m1, the device D checks

⊕S−2
j=0 θ

j+1
D (li)

?= v1 ⊕ v2 (3)

If it holds true, the device D generates a random nonce r and 
computes

m2 = {θ S
D(li) ⊕ r, θ S+1

D (li) ⊕ r} = {d1,d2} (4)

and sends it to the verifier. Moreover, the device D saves d2 in 
its secure register.
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3. The verifier computes and checks

li+S ⊕ li+S+1
?= d1 ⊕ d2 (5)

If it is true, the verifier authenticates the device D and sends

m3 = {li, li+S+2 ⊕ r} = {li, v3} (6)

to D.
4. The device D computes and checks

θ S+1
D (li) ⊕ θ S+2

D (li)
?= v3 ⊕ d2 (7)

If it holds true, the device D authenticates the verifier and 
saves θ S+2

D (li) in its register.

2.1.3. Verification
Both the verifier and the device D can initiate this phase. Sup-

pose that the verifier is initiator of the protocol. The verifier knows 
both li the last synchronized link and σ0 the first sentinel link af-
ter initialization. If li+1 �= σ0, the verifier sends li+1 to the device D, 
else it sends li+2 to it. The device D has the last synchronized link 
li in its register and knows the sentinel link σ0 based on the cur-
rent value of its counter. So it computes l′i+1 = θD(li) and checks 

li+1
?= l′i+1 (or if li+1 = σ0, it checks li+2

?= l′i+2). If it holds true, the 
device D authenticates the verifier and saved li+1 (or li+2) in its 
register. On the verifier side, by using the same method as for the 
device D, the verifier authenticates the device D.

In Fig. 1, the PHEMAP scheme has been illustrated by an exam-
ple. In this example, the first link is l0 and the sentinel links are 
l7, l11 and S = 4.

2.2. Salted PHEMAP scheme

In this section, we give a brief description of the Salted 
PHEMAP scheme, proposed by Barbareschi et al. [7] to be im-
plemented in Cloud-Edge (CE) based IoT systems. CE-based IoT 
systems typically consist of three architectural layers, see Fig. 2: 
i) cloud service as top layer ii) gateway nodes as middle layer iii) 
terminal nodes or edge IoT devices as the lower layer.

The Salted PHEMAP scheme provides mutual authentication be-
tween a terminal node and the respective gateway in a CE-based 
IoT system. In Salted PHEMAP, a gateway acts as a local verifier for 
the underlying terminal nodes by using part of the enrolled PUF 
chains that are transferred from the authentication service (AS). 
Note that the Salted PHEMAP scheme is always performed after 
the basic PHEMAP scheme and also suppose that the terminal de-
vice D and AS are synchronized on link li−1 of chain γD,l0,M . The 
setup phase of the Salted PHEMAP scheme includes the following 
steps:

1. Device D sends a request message m0 = {θD(li−1)} to AS and 
also saves li in its local memory.

2. AS verifies that the received message m0 is equal to imme-
diately following link li in the current chain γD,l0,M . If the 
two values match, AS authenticates D and extracts a car-
net τD,t0,T = {t0, t1, ..., tT −1} from chain γD,l0,M . Next AS gen-
erates random salt rs for device D and computes message 
m1 = {v1, v2} = {θD(l1), θ2

D(l1) ⊕ rs} and sends it to the device 
D.

3. Device D computes l2 = θD(l1) and compares it with v1. If the 
two values match, device D authenticates the AS and extracts 
the salt rs from v2. Afterward, it computes l3 = θD(l2) and 
sends message m2 = {l3} to the AS. It also saves θD(l3) ⊕ rs in 
its local memory to communicate with the respective gateway 
G.
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l0 l1 l2 l3 l4 l5 l6

Initialization

l7 l8 l9

V eri f ication

l10 l11 l12

V eri f ication

θD

Phase Verifier Device

v1 = l1 ⊕ l2 ⊕ n
v2 = l3 ⊕ n

m1={l0,v1,v2}−−−−−−−−→

Init.
m2={d1,d2}←−−−−−−−

θD (l0) ⊕ θ2
D (l0) ⊕ θ3

D (l0)
?= v1 ⊕ v2

d1 = θ4
D (l0) ⊕ r

d2 = θ5
D (l0) ⊕ r

store Q = d2

l4 ⊕ l5
?= d1 ⊕ d2

v3 = l6 ⊕ r

m3={l0,v3}−−−−−−→

θ5
D (l0) ⊕ θ6

D (l0)
?= v3 ⊕ d2

store Q = θ6
D (l0)

l′0 = l8
l′1 = l9

l8−→

Verif.
θD (l8)←−−− θ2

D (Q )
?= l8

store Q = θD (l8)

l′1
?= θD (l8)

Fig. 1. PHEMAP protocol, where Init. and Verif. denote initialization and verification retrospectively.

Fig. 2. CE-based architecture.
4. AS checks θD(l2) 
?= m2, if the two values equal, then AS com-

putes a salted carnet χD,x0,T = {x0, x1, ..., xT −1} = {t0 ⊕ rs, t1 ⊕
rs, ..., tT −1 ⊕ rs} and sends message m3 = {χD,x0,T } to gateway 
through a secure channel.

Now, the device D and the respective gateway G use the salted 
carnet {χD,x0,T } for subsequent authentication operation between 
themselves. Note that, after setup, the device D and the gateway G
carry out the same interactions as the basic PHEMAP verification 
phase discussed in section 2.1. We illustrate the Salted PHEMAP 
scheme by an example in Fig. 3. In this example, suppose that l0 is 
the synchronized link between AS and D.
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3. Security analysis of PHEMAP and Salted-PHEMAP protocols

3.1. Security challenges of the PHEMAP protocol

3.1.1. Impersonate attack
In the initialization phase of the PHEMAP protocol, the attacker 

eavesdrops and records the two valid messages {m1, m2} and in-
tercepts the message {m3} between the verifier and the device:

• The query message of the verifier m1 = {l0, v1, v2}
• The response message of the device m2 = {d1, d2}
• The response message of the verifier m3 = {l0, v3}
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Phase Authentication Service Gateway Device
m0={l1}←−−−− compute l1 = θD (l0)

l1
?= m0

τD,t0,T = {t0, t1, ..., tT −1}
rs : random salt

v1 = l2
v2 = l3 ⊕ rs

m1={v1,v2}−−−−−−−→

Init.
θD (l1)

?= v1

rs = θ2
D (l1) ⊕ v2

store θ4
D (l1) ⊕ rs = l5 ⊕ rs

m2={θ3
D (l1)}←−−−−−−−

l4
?= θ3

D (l1)

χD,t0,T = {xi = ti ⊕ rs, ti ∈ τD,t0,T }
m3={χD,t0 ,T } to gateway through−−−−−−−−−−−−−−−−−−→

a secure channel
m3

L1 = x1

L2 = x2

{L1}−−→

Verif.

θD (x0)
?= L1

store Q = θ2
D (x0)

{θ2
D (x0)}←−−−−

L2
?= θ2

D (x0)

Fig. 3. Salted PHEMAP protocol, where Init. and Verif. denote initialization and verification retrospectively.
Afterward, the attacker repeats the message {m1} and intercepts 
the response message m′

2 = {d′
1, d

′
2} of the device D. The attacker 

computes

• 	r = d1 ⊕ d′
1 = r ⊕ r′ .

• v ′
3 = v3 ⊕ 	r = l6 ⊕ r′

and sends m′
3 = {l0, v ′

3} to the device. Upon receiving the message 
m′

3, the device authenticates the attacker as a legitimate verifier.

3.1.2. Traceability
In the initialization phase, the attacker eavesdrops on the query 

message m1, which is sent by the verifier and the response mes-
sage m2 = {d1, d2} from the device. We know that the XOR of d1

and d2 is a constant value, because

d1 ⊕ d2 = (θ4
D(l0) ⊕ r) ⊕ (θ5

D(l0) ⊕ r) = (θ4
D(l0) ⊕ θ5

D(l0)) (8)

Therefore an attacker can trace a particular device D by sending a 
fixed query message m1 to the victim and XORing two values d1
and d2 of its response message m2.

3.2. Security challenge of the Salted PHEMAP protocol

3.2.1. De-synchronization attack
In de-synchronization attack on Salted PHEMAP, the attacker 

breaks the synchronization between a legitimate device and its 
respective gateway. In the setup phase, the attacker intercepts 
message m1 = {v1, v2} = {θD(li), θ2

D(li) ⊕ rs} and modifies it to 
m′

1 = {θD(li), θ2
D(li) ⊕ rs⊕ �} and sends it to the device D. The 

device D can not verify the integrity of the message m′
1, so it 

computes r = θ2
D(li) ⊕ v2⊕ �. Therefore the device D, unlike the 

gateway G which is synchronized on the link θ4
D (li) ⊕rs , is synchro-

nized on the link θ4
D (li) ⊕ rs⊕ �. Hence, the verification process 

between the device D and the gateway G is failed.
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3.2.2. Impersonation attack
Suppose that 1) the basic PHEMAP and subsequently, the Salted 

PHEMAP have been performed and 2) the transferred messages 
between a device D and the authentication service AS have been 
eavesdropped and recorded by an attacker. Let the initial link of 
the PUF chain be l0. If the attacker sends the query message 
{l0, v1, v2} to the device D, it moves to the initialization phase of 
the basic PHEMAP authentication scheme. Therefore according to 
subsection 3.1, the attacker impersonates as a legitimate authenti-
cation service AS.

3.2.3. Traceability attack
In the setup phase, three links l1, l2, l4 are fixed values. So if an 

attacker eavesdrops the message m0, he/she can trace a particular 
device D by replying the message m0 and receiving the response 
messages m2, m3.

4. PBAP: a PUF-based authentication protocol

This section proposes a PUF based authentication protocol 
called PBAP that uses the recursive sequences (chains) of the 
challenge-response pairs (CRPs) of the PUF embedded on the de-
vices. In the PBAP scheme, chains are stored in the verifier, which 
has no storage limit, and the devices need to store only the last 
PUF response used in the authentication procedure. The PBAP has 
no vulnerabilities of the past proposed scheme and can resist var-
ious known attacks. The PBAP scheme, see also Fig. 4 has three 
phases as follows:

4.1. Enrollment

In this phase, the verifier generates and stores a set of PUF 
chains for each device in its secure data register. These PUF chains 
are generated by iterating a PUF function θD(.), which is embedded 
in a hardware device (see Definition 2.1). This phase is performed 
in secure environment.
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l0 l1 l2 l3

Initialization

l4 l5 l6 l7

V eri f ication

l8 l9 l10 l11

V eri f ication

θD

Phase Verifier Device

m1 = θD (l0) ⊕ n;
{l0,m1}−−−−→

Init.

n = m1 ⊕ θD (l0);
r: random number;
k1: Hamming weight of r;
k2: Hamming weight of r ∧ n;
m2 = θD (l0) ⊕ r;
m3 = (((θ2

D (l0) ≪ k1) ∧ (r ≫ k2))

∨(θD (l0) ≪ k2)) ⊕ (n ≪ k1);
store l2 = θ2

D (l0);
{m2,m3}←−−−−−

r = m2 ⊕ θD (l0);
n

?= (m3 ⊕ ((((θ2
D (l0) ≪ k1) ∧ (r ≫ k2)))

∨(θD (l0) ≪ k2)) ≫ k1);
m4 = ((θ3

D (l0)≫ k1) ∧ (r ≪ k1))

∨(θ2
D (l0) ≫ k2);

update l′0 = l3 = θ3
D (l0);

{m4}−−→
m′

4 = ((θD (l2) ≫ k1) ∧ (r ≪ k1))

∨(l2 ≫ k2);
m′

4
?= m4;

store l′0 = θD (l2);
m5 = θD (l′0) ⊕ θ2

D (l′0);
0 ≤ counter ≤ k;
if no response is received, counter++

if counter=k, move to Init. phase
{m5}−−→

Verif.
θD (l′0) ⊕ θ2

D (l′0)
?= m5;

m6 = θ3
D (l′0) ⊕ θ4

D (l′0);
store l′′0 = l7 = θ4

D (l′0);
{m6}←−−

θ3
D (l′0) ⊕ θ4

D (l′0)
?= m6;

update l′′0 = l7 = θ4
D (l′0);

Fig. 4. The PBAP protocol, where Init. and Verif. denote initialization and verification retrospectively.
4.2. Initialization

In initialization phase

1. The verifier selects a PUF chain with the initial link li and 
generates a random nonce n. Afterward, it sends the message 
{li, m1 = θD(li) ⊕ n} to the device D .

2. Upon receiving the message m1, the device D generates ran-
dom number r and computes
• n = m1 ⊕ θD(li)

• k1=The Hamming weight of r
• k2=The Hamming weight of r ∧ n
• m2 = θD(li) ⊕ r
• m3 = (((θ2

D(li) ≪ k1) ∧ (r ≫ k2)) ∨ (θD(li) ≪ k2)) ⊕ (n ≪
k1)

• Store li+2 = θ2
D(li)

and sends {m2, m3} to the verifier.
3. The verifier computes r and n′ and compares the two values n

and n′
• r = m2 ⊕ θD(li)

• n′ = (m3 ⊕ ((((θ2
D(li) ≪ k1) ∧ (r ≫ k2))) ∨ (θD(li) ≪ k2)) ≫

k1)
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• n′ ?= n
If two values match, the verifier authenticates the device D
and computes
• m4 = ((θ3

D(li) ≫ k1) ∧ (r ≪ k1)) ∨ (θ2
D(li) ≫ k2)

• Update l′i = li+3 = θ3
D(li)

Then, it sends the message m4 to the device D .
4. The device D computes m′

4 and compares it with m4

• m′
4 = ((θD(li+2) ≫ k1) ∧ (r ≪ k1)) ∨ (li+2 ≫ k2)

• m′
4

?= m4

• Store li+3 = θ3
D(li)

If the comparison succeeds, the device D authenticates the 
verifier and the initialization phase is finished successfully.

4.3. Verification

Both the verifier and the device can initiate the verification 
phase. Just after the initialization phase, the verifier and the device 
store in their secure register, the same last link that has been used 
in previous exchanges (let us assume it is li+3). Suppose that the 
verifier initiates the verification phase. This phase contains three 
steps as follows:
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Phase Authentication Service Gateway Device
m0={l1}←−−−− compute l1 = θD (l0);

l1
?= m0;

τD,t0,T = {t0 = l5, t1, ..., tT −1};
rs: random salt;

k: Hamming weight of rs;
v1 = l2 ⊕ rs;
v2 = (l3 ≪ k) ∧ (rs ≫ k);

m1={v1,v2}−−−−−−−→

Init.

rs = θD (l1) ⊕ v1;
v2

?= (θ2
D (l1) ≪ k) ∧ (rs ≫ k);

v3 = (θ3
D (l1) ≫ k) ∧ (rs ≪ k);

store θ4
D (l1) = l5 and rs;

m2={v3}←−−−−−
(l4 ≫ k) ∧ (rs ≪ k)

?= v3;
τD,t0,T = {xi = ti ⊕ rs,

ti ∈ τD,t0,T };
m3={χD,x0 ,T } to gateway through−−−−−−−−−−−−−−−−−−−→

a secure channel
m3

L1 = x1;
L2 = x2;
{L1}−−→

Verif.

θD (l5) ⊕ rs
?= L1;

store Q = θ2
D (l5) and rs;

L2 = θ2
D (l5) ⊕ rs;

{θ2
D (l5)⊕rs}←−−−−−−

L2
?= θ2

D (l5) ⊕ rs;

Fig. 5. The Salted PBAP protocol, where Init. and Verif. denote initialization and verification retrospectively.
1. The verifier computes m5 and runs a counter where 0 ≤
counter ≤ k
• m5 = θD(li+3) ⊕ θ2

D(li+3)

and sends message {m5} to the device D . If no response is 
received within a reasonable interval, the verifier increases 
the counter and computes a new message m5 and sends it 
again to the device D . This process continues until the counter
reaches k. In this situation, the verifier performs the initializa-
tion phase.

2. The device D verifies
• θD(li+3) ⊕ θ2

D(li+3) 
?= m5

If it holds true, the device D verifies the verifier and computes
• m6 = θ3

D(li+3) ⊕ θ4
D(li+3)

• store li+7 = θ4
D(li+3)

and sends the message m6 to the verifier.
3. The verifier computes and compares

• θ3
D(li+3) ⊕ θ4

D(li+3) 
?= m6

If the comparison succeeds, the verifier verifies the device D
and stores li+7 = θ4

D(li+3) in its secure register.

We describe PBAP by an example which is shown in Fig. 4. Let 
in this chain, li = l0 is the initial link used for the initialization 
procedure, and l4, l8, are the initial links used for the verification 
procedure.

5. The Salted PBAP scheme

In the PBAP scheme, a central authentication service AS re-
sponds to all authentication requests and verifies the identity of 
all the underlying nodes. In cloud-edge (CE) systems, for scalabil-
ity purposes and to prevent the negative effect of the centralized 
verifier AS as a bottleneck on the total latency, partial of the au-
thentication capabilities of the AS is delegated to the gateway D. 
Therefore, it’s able to authenticate mutually the underlying nodes 
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without relying upon a central authentication service AS. In this 
section, based on the basic PBAP scheme, we propose a mutual 
authentication scheme (called Salted PBAP scheme) that is well 
suited for the CE systems and able to apply in a three-ring IoT 
structure. The Salted PBAP scheme allows a device D and its re-
spective gateway G to prove their identities and authenticate each 
other mutually. For this purpose, we transfer the portion of the 
enrolled PUF chain χD,x0,T ∈ γD,l0,M from the central authentica-
tion service AS to a gateway G. A gateway G uses the sequence 
of consecutive links χD,x0,T to verify the identities of the underly-
ing devices. Note that the Salted PBAP scheme is always performed 
when the basic PBAP scheme has been performed successfully and 
AS and the device D have been synchronized on the link li−1 of 
chain γD,l0,M . The Salted PBAP scheme, see also Fig. 5, has two 
phases as follows:

5.1. Initialization

1. Device D sends a query message m0 = {li = θD(li−1)} to AS.
2. AS verifies that the value included in the query message cor-

responds to the link immediately following li−1 in the current 
chain γD,l0,M . If the two values match, AS authenticates the de-
vice D and then it extracts a carnet τD,t0,T = [t0, ..., tT −1] from 
chain γD,l0,M starting from link t0 = li+4. Next, it generates a 
random salt rs and computes v1 and v2 as following:
• v1 = li+1 ⊕ rs
• v2 = (li+2 ≪ k) ∧ (rs ≫ k)

and sends the message m1 = {v1, v2} to the device D.
3. D computes v ′

2 and compares it with v2
• rs = θD(li) ⊕ v1
• v ′

2 = (θ2
D(li) ≪ k) ∧ (rs ≫ k)

• v2
?= v ′

2
If the two values match, the device D authenticates AS and 
computes v3 = (θ3 (li) ≫ k) ∧(rs ≪ k). Then it sends the mes-
D
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sage m2 = {v3} to AS and stores θ4
D(li) = li+4 and rs in its local 

memory.
4. AS computes v ′

3 and compares it with the message m2
• v ′

3 = (li+4 ≫ k) ∧ (rs ≪ k)

• v3
?= v ′

3
If the two values are equal, the AS authenticates the device D. 
Then it generates the Salted carnet χD,x0,T = {xi = ti ⊕ rs, ti ∈
τD,t0,T } and sends the message m3 = {χD,x0,T } to the gateway 
G through a secure channel.

5.2. Verification

After the initialization phase, both of the device D and the gate-
way G are synchronized on the salted link x0 = li+5 ⊕ rs . Using 
the salted carnet χD,x0,T , the gateway G and the device D can au-
thenticate each other with exchanging two consecutive salted links 
{xi, xi+1} of the salted chain χD,x0,T . Suppose that the gateway G
wants to verify the identity of the device D.

1. The gateway G sends the message L1 = {x1} to the device D.

2. The device D compares θD(li+5) ⊕ r
?= L1. If two values match, 

the device D verifies the gateway G and stores Q = θ2
D(li+5)

and rs in its secure memory and sends the message L2 =
{θ2

D(li+5) ⊕ rs} to the gateway G.

3. G compares L2
?= θ2

D(li+5) ⊕ rs . If it holds true, then the gate-
way G verifies the device D and the verification procedure is 
finished successfully.

6. Security analysis of the PBAP and the Salted PBAP protocols

In this section, we analyze and evaluate the security of the two 
proposed schemes. First, we provide informal proof for the PBAP 
scheme, and in the following, we informally discuss the security of 
the Salted PBAP protocol. We show that the two proposed schemes 
can resist common known attacks. Next, by scyther tool, a formal 
security analysis of the two proposed schemes is presented.

It is worth noting that through our analysis we consider the 
use of a reliable and robust PUF function in each device. More 
precisely, in this model, given challenges C �= C′ then P U F (C)

and P U F (C′) will be completely different but a PUF returns the 
same P U F (C) for the same C; even if it is tested for the same 
C again and again. In addition, different PUFs also return com-
pletely different responses for the same challenge. It is worth not-
ing that designing such a PUF function is an active research area 
itself, and out of the scope of this paper, an interested reader can 
see [1,15,27,29,34] for the state of the art of the designing a reli-
able PUF and its challenges.

6.1. Informal security proof

6.1.1. Informal security proof of the PBAP scheme
1. Resistance to de-synchronization attack: In the initialization 

phase, in the first step, the verifier sends the initial link li to 
the device D, so it is synchronized on the link li with the de-
vice D. In the verification phase, we increase counter by one 
each time the message m5 is sent to the device D. Two differ-
ent de-synchronization cases may occur. First, the message m5
does not properly reach the device, and second, the message 
m6 does not reach the verifier. In both cases, the verifier in-
creases counter by 1 and resends the message m5 to the device 
D. If no response is received and counter reaches the value k, 
then the verifier detects the de-synchronization has occurred 
and triggers the re-initialization.

2. Resistance to replay attack: In the PBAP scheme, all exchanged 
messages m1, m2, m3, m4 are updated in each session, by ran-
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dom numbers n and r, which are generated by the verifier and 
the device D respectively. Therefore the attacker cannot carry 
out a replay attack by replaying messages from the previous 
sessions.

3. Resistance to traceability attack: In an authentication protocol, 
if in each session, a constant value is transferred between two 
parties of the protocol (i.e., the tag and the reader) or the re-
sponse of a tag to a fixed query message includes a constant 
value, then the attacker can trace and find a particular tag. 
In the PBAP scheme, all exchanged messages include random 
numbers n and r, and change in each session. So the attacker 
can not trace the two parties of the communication.

4. Resistance to impersonation attack: In the PBAP scheme, the 
message m1 includes the random nonce n which is changed 
in each session. We use the variables k1, k2 as parameters that 
are input to a function to construct messages m3, m4. These 
variables depend on random numbers n, r and an attacker 
cannot extract these values from any messages transferred be-
tween device and verifier without knowing the values r and 
n. Moreover, on the device side, we use the variables k1, k2 to 
generate the messages m2, m3. So an adversary cannot gener-
ate these messages or use the previous transferred messages 
to perform an impersonation attack.

6.1.2. Informal security proof of the Salted PBAP scheme
1. Resistance to de-synchronization attack: The Salted PBAP 

scheme is performed when the basic PBAP scheme has been 
performed successfully, and both of the device D and the ver-
ifier AS have been synchronized on link li . The verifier AS
and the device D store in their secure memories the last 
link, which is exchanged in each step of the initialization 
or the verification phase. Therefore, they can detect the de-
synchronization attack.

2. Resistance to replay attack: The values v1, v2 include the ran-
dom salt rs , therefore they change in each session. The device 
D also uses the random salt rs to compute the value v3. There-
fore the attacker cannot perform a replay attack.

3. Resistance to traceability attack: The attacker cannot trace a 
particular device D because all values v1, v2, v3 are changed 
in each session.

4. Resistance to impersonation attack: The attacker has no 
knowledge about the links li, li+1 which are used to comput-
ing the values v1, v2. Also, he cannot compute the message 
m′

1 by using the last exchanged message m1. So he cannot im-
personate as the legitimate verifier AS. The message m2 does 
not reveal any information about the link li+2; therefore, the 
attacker cannot compute and send a response message m′

2 to 
the verifier. Hence, he cannot impersonate as the legitimate 
device D.

5. Resistance to man-in-the-middle attack: We know that an at-
tacker has no knowledge about θD (li+1), therefore he/she can 
not compute rs . Suppose that an attacker modifies the mes-
sage m1. In the device side, it computes v ′

2 and compares it 
with received message v2. If an attacker changes v1 or v2, the 
device can detect an error occurred. The validity and integrity 
of the message v3 is checked by the verifier. Therefor, our 
proposed scheme is resistance against a man-in-the-middle at-
tack.

6. Resistance to eavesdrop attack: The verifier encrypts random 
salt rs with θD(li), therefore an attacker cannot decrypt the 
message v1. The messages v3, v4 are encrypted with θ2

D(li)

and θ3
D(li) respectively. We suppose that an attacker has no 

knowledge about the links li ’s, therefore he/she can’t eaves-
drop on the communication between the verifier and a device.
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Table 2
Security comparison of the two proposed protocols to other protocols where Imper, 
Trace, Repl, Desynch, Discl and M-i-m denote impersonation, traceability, reply, de-
synchronization, disclosure and man-in-the-middle attacks retrospectively.

Protocol Imper Trace Repl Desynch Discl M-i-m

Gope et al. [22] � � � � � -

Ebrahimabadi [19] � - � - � -

Kumar [33] � � � � � �
Xu et al. [39] × × × × × -

Barbareschi et al. [6] × × � � � �
Barbareschi et al. [7] × × � × � �
Two proposed schemes � � � � � �
Table 3
Security analysis result of the PBAP scheme with Scyther.

Claim Status Comments

Secret l0 Ok No attacks within bounds

Secret n Ok No attacks within bounds

Secret r Ok No attacks within bounds

Secret m1 Ok No attacks within bounds

Secret m2 Ok No attacks within bounds

Secret m3 Ok No attacks within bounds

Secret m4 Ok No attacks within bounds

Secret m5 Ok No attacks within bounds

Secret m6 Ok No attacks within bounds

Niagree Ok No attacks within bounds

Nisynch Ok No attacks within bounds

Alive Ok No attacks within bounds

Weakagree Ok No attacks within bounds

As shown in Table 2, we compare the security of the PBAP and 
Salted PBAP schemes with their predecessors and some other re-
lated protocols. The Comparison results show that the improved 
protocols have an acceptable level of security and could satisfy the 
security requirements of an authentication protocol for the Internet 
of things applications. Besides our protocols, the protocol proposed 
in [22] also provides desired security, but with more computation 
cost on the tag’s side.

6.2. Formal security proof

Using software tools is an approach to evaluate the security of a 
cryptographic protocol. Several software tools like Avispa, Scyther, 
ProVerif, etc., usually support cryptographic primitives such as 
symmetric and asymmetric cryptography, hash functions, digital 
signatures, and bit-commitment. Authentication protocols involve 
at least two parties (e.g. the reader, the tag), and each party plays 
a role in authentication protocols. All events that occur in each 
party, like computing, comparing, sending, or receiving messages, 
are defined in a set of roles (e.g. role of the tag, reader’s role). 
We use the Scyther tool to evaluate the security of our two pro-
posed protocols. The roles of our two protocols are implemented 
by Security Protocol Description Language (SPDL) as represented 
in Appendix A. The report of the scyther tool shows that our two 
protocols are safe against all threats. Security analysis result of the 
two proposed schemes is presented in Table 3.

6.3. PUF security and reliability issues

The security and robustness of the proposed mutual authenti-
cation protocols are partly substantiated on the PUF security and 
reliability. One of the significant drawbacks of PUF technology is 
the instability of their outputs caused by the operational con-
ditions, aging of the device, etc. The most extended mitigation 
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Table 4
FFR for initialization and verification phases of 
PBAP and Salted PBAP protocols.

Initialization Verification

PBAP 4e−10 4e−10

Salted PBAP 5e−10 2e−10

Table 5
Device/verifier or gateway FAR for initialization and 
verification phases of PBAP and Salted PBAP protocols 
(N = 128bits).

Protocol Initialization Verification

D
ev

ic
e PBAP 7,45e−155 7,45e−155

Salted PBAP 2,19e−193 8,63e−78

V
er

ifi
er PBAP 2,53e−116 7,45e−155

Salted PBAP 2,53e−116 8,63e−78

techniques are the fuzzy-extractor blocks and helper data [17,23]. 
These blocks are dedicated to turning the noisy PUF responses into 
reliable responses using sophisticated error-correcting codes (ECC). 
Other solutions could be applied depending on the kind of PUF 
used. For instance, some advanced enrollment techniques try to 
enhance the responses of PUFs in hostile scenarios (e.g., improving 
reliability by removing unreliable bits [36] or re-enrollment during 
the lifetime of the PUF to mitigate the aging effects [38]).

In this regard, a measure to determine the quality of an au-
thentication process that involves unreliable responses of a PUF 
instance is the false rejection rate (FRR). The FRR for the proposed 
authentication protocols is directly proportional to the number of 
PUF generations in each authentication phase. It is noteworthy that 
a simple bit-flip in one of the generations would change com-
pletely the chain sequence generating a mismatch between the ex-
pected PUF responses. Table 4 summarizes the FRR for each phase 
of the proposed protocols. To obtain these results, we have consid-
ered the scenario presented in [7], where an Anderson PUF and a 
BCH(63,51) error correction code are used to reach a final instabil-
ity of p = 10−10. The F R R = 1 − (1 − p)x , where x is the number 
of new PUF responses that must be generated in the device.

The influence of the PUF on the security of the authentication 
mechanisms presented is related to the probability that an attacker 
can generate the correct response for a given challenge. In a PUF, 
assuming that there is no information entropy loss [7], this prob-
ability depends only on the number of bits (N) of the response 
(1/2N ). At the protocol level, the False Acceptance Rate (FAR) mea-
sures the probability of a forge device/verifier being authenticated. 
We can define the FAR as follows: F AR = (1/2N )x , where N is the 
number of bits of each PUF response and x is the number of PUF 
responses that the device or the verifier must generate. Table 5

All in all, the proposed protocols have obtained good FFR and 
FAR metrics that are in line with the results presented in [7].
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Table 6
Implementation results for Xilinx FPGA Zynq-7.

Algorithm Encryption Function 
(AES)

Hash Function 
(SHA-3)

PRNG PUF 
(Anderson PUF)

Elliptic Curve 
Cryptography

Approximate area 
(Slices LUTs)

≈ 431 [16] ≈ 735 [26] ≈ 1371 [32] ≈ 3936 [6] ≈ 2783 [35]

Table 7
Cost comparison, where S. denotes “Salted”.

Protocol Ebrahimabadi et al. 
[19]

Kumar et al. 
[33]

Gope et al. 
[22]

Xu et al. 
[39]

PHEMAP 
[6]

S. PHEMAP 
[7]

PBAP S.PBAP

Computation cost 
of the tag

1×PUF 1×Hash+ 
1×PUF+ 
1×PRNG+ 
1×Enc

5×Hash+ 
2×PUF+ 
2×PRNG

6×PUF+ 
1×PRNG

7×PUF+ 
1×PRNG

5×PUF 3×PUF+ 
1×PRNG

5×PUF

Approximate area 
(Slices LUTs)

≈ 3936 ≈ 6473 ≈ 6042 ≈ 5307 ≈ 5307 ≈ 3936 ≈ 5307 ≈ 3936
Machine learning (ML) attacks against PUFs are also an emerg-
ing source of concern for PUF-based technologies. Typically, ML 
attacks involve an attacker collecting a large subset of CRPs to cre-
ate a mathematical model to predict unknown CRPs. Designing ML 
resistant PUFs such as XOR-APUF, FF-PUF or MPUF has emerged as 
an excellent solution to resist ML attacks [14]. At the protocol level, 
lockdown mechanisms (e.g.([40]) and the inclusion of randomiza-
tion methods to preserve the mappings between challenges and 
responses is also an exciting solution [14]. In that vein, the PBAP 
protocol implements a randomization mapping of the challenge-
response space at the generation of message m1 that prevents 
several kinds of ML attacks. In addition to this, a lockdown mech-
anism like the one proposed in [40] could be easily integrated into 
the algorithm to avoid an excessive number of CRPs requests by an 
adversary.

7. Implementation

IoT systems typically consist of several sensors, RFID tags, and 
computing nodes with restrictions on power, processing capacity, 
and memory. It is worth noting, even mobile readers have enough 
resources to support conventional cryptographic primitives. There-
fore, to design an authentication protocol, our main concern is 
edge devices, e.g., passive RFID tags. Hence, we focus on the com-
putational cost of the edge devices and try to design a low-cost 
scheme. This section presents two implementations of the PBAP 
protocol in two different edge devices: a low-power microcon-
troller and an FPGA.

We have selected the implementation strategy presented in 
[10] where a weak PUF (e.g. SRAM) and a symmetric cypher (e.g. 
AES) are combined. The selected microcontroller for the PBAP im-
plementation was the STMicroelectronics Nucleo F401RE board, 
equipped with a 32-bit microcontroller ARM® Cortex®-M4, 512 kB 
flash and 96 kB SRAM. We have used the official cryptographic li-
brary provided by STMicroelectronics to implement a cypher (AES-
128) quickly. We have selected a memory region with a good 
distribution of 0’s and 1’s (uniformity) to obtain the PUF keys 
(starting address: 0x200003f4). We have collected and saved three 
different PUF chains as proof of concept implementation. The au-
thentication service (verifier) was implemented using python on a 
desktop. A serial port was used to simulate the communication be-
tween devices. The average mutual authentication time measured 
in 100 consecutive operations using PBAP protocol is 59,3 ms.

We have selected the Xilinx Zybo Z7-20 board for the FPGA im-
plementation, which embeds an xc7z020clg400-1 FPGA. The hard-
ware resources used to implement the PBAP protocol in this FPGA 
are 6878 Slice LUTs and 707 flip-flops. These results do not include 
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the hardware resources necessary to implement a true random 
number generator (TRNG).

The presented results depend on the selected PUF, cypher, ar-
chitecture and technology. In addition, no optimizations have been 
carried out in the implementations. In order to have a fair compar-
ison with other protocols, in terms of computational cost on the 
device side, we have counted the number of PUF, PRG, and hash 
functions in each protocol for evaluating the computational perfor-
mance of our two schemes. The impact of logic operations such 
as exclusive OR (XOR) and SHIFT operations is meagre. In Table 6, 
we show the implementation cost based on the reports for cryp-
tographic primitives in related literature, i.e. hash function (in this 
case SHA-3 [9]), PUF (in this case Anderson PUF [4]), PRNG and 
Elliptic Curve Cryptography (ECC) that are used by many authenti-
cation protocols. The performance comparison results of the PBAP 
and Salted PBAP with previously proposed schemes are presented 
in Table 7. It should be noted that some other related protocols 
are omitted in our comparison because we believe many passive 
tags can not comply with their requirements, such as the support 
of hash functions, symmetric encryption algorithms, public key al-
gorithms, and we just mentioned [22] as an example.

8. Conclusion

This article analyzes the security of two recently proposed PUF-
based protocols, i.e. PHEMAP and Salted PHEMAP. The detailed 
analysis shows that these protocols are vulnerable to various at-
tacks such as device impersonation, de-synchronization, and trace-
ability attacks. Based on the same design as Barbareschi et al.’s 
protocols [6] [7], we have proposed two lightweight authentica-
tion protocols based on PUF chains called PBAP and Salted PBAP. 
The proposed schemes use low-cost operations such as exclusive 
OR, SHIFT, and PUF, so they are compatible with low computing 
devices such as RFIDs and microsensors. Moreover, through formal 
and informal methods, we have shown how the proposed schemes 
have not inherited the security weaknesses of the PHEMAP and 
Salted PHEMAP schemes and are resistant against common known 
attacks.
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Appendix A. Security Protocol Description Language model of 
the proposed protocols

const PUF: Function;
const XOR: Function;
const SHIFT: Function;
const AND: Function;
const OR: Function;
macro m1 = XOR (PUF (l0),n);
macro m2 = XOR (PUF (l0),r);
macro m3 = XOR (OR (AND (SHIFT (PUF (l1),k1),SHIFT (r,k2)),SHIFT 
(PUF (l0),k2)),SHIFT (n,k1));
macro m4 = OR (AND (SHIFT (PUF (l2),k1),SHIFT (r,k1)),SHIFT (PUF 
(l2),k2));
macro m5=XOR (PUF (l3),PUF (PUF (l3)));
macro m6=XOR (PUF (PUF (PUF (l3))),PUF (PUF (PUF (PUF (l3)))));
protocol ThePBAPprotocol (Verifier,Device)
role Verifier
secret l0,l1,l2,l3;
fresh r,k1,k2,n: Nonce;
send1 (Verifier,Device,m1,m4);
recv2 (Device,Verifier,m2,m3);
match (n,XOR (m3,SHIFT (OR (AND (SHIFT (PUF (l1),k1),SHIFT 
(r,k2)),SHIFT (PUF (l0),k2)),k1)));
send3 (Verifier,Device,m5);
recv4 (Device,Verifier,m6);
claim (Verifier, Secret, r);
claim (Verifier, Secret, n);
claim (Verifier,Niagree); claim (Verifier,Nisynch);
claim (Verifier,Alive); claim (Verifier,Weakagree);
role Device
secret l0,l1,l2,l3;
fresh r,k1,k2,n: Nonce;
recv1 (Verifier,Device,m1,m4);
match (m4,OR (AND (SHIFT (PUF (l2),k1),SHIFT (r,k1)),SHIFT (PUF 
(l2),k2)));
send2 (Device,Verifier,m2,m3);
recv3 (Verifier,Device,m5);
match (m5,XOR (PUF (l3),PUF (PUF (l3))));
send4 (Device,Verifier,m6);
claim (Device, Secret, r);
claim (Device, Secret, n);
claim (Device,Niagree); claim (Device,Nisynch);
claim (Device,Alive); claim (Device,Weakagree);
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